Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Conserv Physiol ; 5(1): cox070, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29255608

RESUMO

Environmental conditions may affect individual physiological processes that influence short-term performance and ultimately growth, survival and reproduction. As such, habitats selected by animals must provide suitable and adequate resources. Ectothermic species are highly dependent on climatic conditions and ambient temperatures that dictate body temperature regulation and in turn physiological processes. We investigated the thermoregulatory performance, habitat selection, and movements of an ectothermic vertebrate, the Eastern box turtle (Terrapene carolina carolina) to assess the importance of thermoregulatory physiology in habitat selection. We evaluated the relationship between habitat selection and thermoregulatory performance in Southwest Ohio over two active seasons from May until October. We found that T. carolina selected shaded habitats, including evergreen and deciduous forests, as well as herbaceous grasslands, conformed to the ambient temperatures throughout the active season, although these habitats had temperatures below those expected based on thermal optima of box turtles. Further, we found that movement was not correlated with internal body temperature. Our study shows that thermal conditions are not paramount in habitat selection of box turtles, but that cooler temperatures do not have an effect on the extent of their locomotion.

2.
Neuron ; 95(6): 1283-1291.e4, 2017 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-28844526

RESUMO

Neuronal activity generates ionic flows and thereby both magnetic fields and electric potential differences, i.e., voltages. Voltage measurements are widely used but suffer from isolating and smearing properties of tissue between source and sensor, are blind to ionic flow direction, and reflect the difference between two electrodes, complicating interpretation. Magnetic field measurements could overcome these limitations but have been essentially limited to magnetoencephalography (MEG), using centimeter-sized, helium-cooled extracranial sensors. Here, we report on in vivo magnetic recordings of neuronal activity from visual cortex of cats with magnetrodes, specially developed needle-shaped probes carrying micron-sized, non-cooled magnetic sensors based on spin electronics. Event-related magnetic fields inside the neuropil were on the order of several nanoteslas, informing MEG source models and efforts for magnetic field measurements through MRI. Though the signal-to-noise ratio is still inferior to electrophysiology, this proof of concept demonstrates the potential to exploit the fundamental advantages of magnetophysiology.


Assuntos
Magnetoencefalografia/instrumentação , Magnetoencefalografia/métodos , Neurônios/fisiologia , Animais , Gatos , Potenciais Evocados/fisiologia , Feminino , Masculino , Córtex Visual/fisiologia
3.
Physiol Biochem Zool ; 75(3): 273-82, 2002.
Artigo em Inglês | MEDLINE | ID: mdl-12177830

RESUMO

Ectotherms can adjust their thermoregulatory set points in response to bacterial infection; the result may be similar to endothermic fever. We examined the influence of dose on the set point of body temperature (T(b)) in Terrapene carolina. After acclimating postprandial turtles to 20 degrees C, we injected them with two doses of bacterial endotoxin (LPS; lipopolysaccharide from Escherichia coli), 0.0025 or 0.025 mg LPS/g nonshell body mass, or with reptilian saline (control group). We placed the animals singly in linear thigmothermal gradients and recorded their T(b)'s for 48 h. The turtles showed dose-influenced thermal selection. Turtles injected with the high dose had T(b)'s significantly higher than control turtles, whereas low-dose turtles had T(b)'s significantly lower than control turtles. Also, there was a low daily effect on the T(b) of the turtles injected with the high dose. High-dose turtles had significantly higher T(b)'s than the control turtles during the first day but not during the second. Our results support the prediction of Romanovsky and Székely that an infectious agent may elicit opposite thermoregulatory responses depending on quality and quantity of the agent and the host health status.


Assuntos
Regulação da Temperatura Corporal/efeitos dos fármacos , Temperatura Corporal/efeitos dos fármacos , Lipopolissacarídeos/farmacologia , Tartarugas/microbiologia , Tartarugas/fisiologia , Animais , Ritmo Circadiano , Relação Dose-Resposta a Droga , Escherichia coli
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA