Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Nature ; 604(7906): 486-490, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35444322

RESUMO

Marine heatwaves (MHWs)-periods of exceptionally warm ocean temperature lasting weeks to years-are now widely recognized for their capacity to disrupt marine ecosystems1-3. The substantial ecological and socioeconomic impacts of these extreme events present significant challenges to marine resource managers4-7, who would benefit from forewarning of MHWs to facilitate proactive decision-making8-11. However, despite extensive research into the physical drivers of MHWs11,12, there has been no comprehensive global assessment of our ability to predict these events. Here we use a large multimodel ensemble of global climate forecasts13,14 to develop and assess MHW forecasts that cover the world's oceans with lead times of up to a year. Using 30 years of retrospective forecasts, we show that the onset, intensity and duration of MHWs are often predictable, with skilful forecasts possible from 1 to 12 months in advance depending on region, season and the state of large-scale climate modes, such as the El Niño/Southern Oscillation. We discuss considerations for setting decision thresholds based on the probability that a MHW will occur, empowering stakeholders to take appropriate actions based on their risk profile. These results highlight the potential for operational MHW forecasts, analogous to forecasts of extreme weather phenomena, to promote climate resilience in global marine ecosystems.

3.
Nat Commun ; 14(1): 1038, 2023 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-36914643

RESUMO

Recently, there has been substantial effort to understand the fundamental characteristics of warm ocean temperature extremes-known as marine heatwaves (MHWs). However, MHW research has primarily focused on the surface signature of these events. While surface MHWs (SMHW) can have dramatic impacts on marine ecosystems, extreme warming along the seafloor can also have significant biological outcomes. In this study, we use a high-resolution (~8 km) ocean reanalysis to broadly assess bottom marine heatwaves (BMHW) along the continental shelves of North America. We find that BMHW intensity and duration varies strongly with bottom depth, with typical intensities ranging from ~0.5 °C-3 °C. Further, BMHWs can be more intense and persist longer than SMHWs. While BMHWs and SMHWs often co-occur, BMHWs can also exist without a SMHW. Deeper regions in which the mixed layer does not typically reach the seafloor exhibit less synchronicity between BMHWs and SMHWs.

4.
Sci Adv ; 8(18): eabm3468, 2022 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-35522743

RESUMO

Ocean memory, the persistence of ocean conditions, is a major source of predictability in the climate system beyond weather time scales. We show that ocean memory, as measured by the year-to-year persistence of sea surface temperature anomalies, is projected to steadily decline in the coming decades over much of the globe. This global decline in ocean memory is predominantly driven by shoaling of the upper-ocean mixed layer depth in response to global surface warming, while thermodynamic and dynamic feedbacks can contribute substantially regionally. As the mixed layer depth shoals, stochastic forcing becomes more effective in driving sea surface temperature anomalies, increasing high-frequency noise at the expense of persistent signals. Reduced ocean memory results in shorter lead times of skillful persistence-based predictions of sea surface thermal conditions, which may present previously unknown challenges for predicting climate extremes and managing marine biological resources under climate change.

5.
Nat Commun ; 11(1): 1903, 2020 04 20.
Artigo em Inglês | MEDLINE | ID: mdl-32313028

RESUMO

Summer 2019 observations show a rapid resurgence of the Blob-like warm sea surface temperature (SST) anomalies that produced devastating marine impacts in the Northeast Pacific during winter 2013/2014. Unlike the original Blob, Blob 2.0 peaked in the summer, a season when little is known about the physical drivers of such events. We show that Blob 2.0 primarily results from a prolonged weakening of the North Pacific High-Pressure System. This reduces surface winds and decreases evaporative cooling and wind-driven upper ocean mixing. Warmer ocean conditions then reduce low-cloud fraction, reinforcing the marine heatwave through a positive low-cloud feedback. Using an atmospheric model forced with observed SSTs, we also find that remote SST forcing from the central equatorial and, surprisingly, the subtropical North Pacific Ocean contribute to the weakened North Pacific High. Our multi-faceted analysis sheds light on the physical drivers governing the intensity and longevity of summertime North Pacific marine heatwaves.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA