Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 56
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Emerg Infect Dis ; 30(5): 991-994, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38666642

RESUMO

African swine fever virus (ASFV) genotype II is endemic to Vietnam. We detected recombinant ASFV genotypes I and II (rASFV I/II) strains in domestic pigs from 6 northern provinces in Vietnam. The introduction of rASFV I/II strains could complicate ongoing ASFV control measures in the region.


Assuntos
Vírus da Febre Suína Africana , Febre Suína Africana , Genótipo , Filogenia , Animais , Vírus da Febre Suína Africana/genética , Vírus da Febre Suína Africana/classificação , Vietnã/epidemiologia , Febre Suína Africana/epidemiologia , Febre Suína Africana/virologia , Suínos , Sus scrofa/virologia , Recombinação Genética
2.
BMC Genomics ; 23(1): 584, 2022 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-35962326

RESUMO

BACKGROUND: Mitochondrial genomes are the most sequenced genomes after bacterial and fungal genomic DNA. However, little information on mitogenomes is available for multiple metazoan taxa, such as Culicoides, a globally distributed, megadiverse genus containing 1,347 species. AIM:  Generating novel mitogenomic information from single Culicoides sonorensis and C. biguttatus specimens, comparing available mitogenome mapping and de novo assembly tools, and identifying the best performing strategy and tools for Culicoides species. RESULTS: We present two novel and fully annotated mitochondrial haplotypes for two Culicoides species, C. sonorensis and C. biguttatus. We also annotated or re-annotated the only available reference mitogenome for C. sonorensis and C. arakawae. All species present a high similarity in mitogenome organization. The general gene arrangement for all Culicoides species was identical to the ancestral insect mitochondrial genome. Only short spacers were found in C. sonorensis (up to 30 bp), contrary to C. biguttatus (up to 114 bp). The mitochondrial genes ATP8, NAD2, NAD6, and LSU rRNA exhibited the highest nucleotide diversity and pairwise interspecific p genetic distance, suggesting that these genes might be suitable and complementary molecular barcodes for Culicoides identification in addition to the commonly utilized COI gene. We observed performance differences between the compared mitogenome generation strategies. The mapping strategy outperformed the de novo assembly strategy, but mapping results were partially biased in the absence of species-specific reference mitogenome. Among the utilized tools, BWA performed best for C. sonorensis while SPAdes, MEGAHIT, and MitoZ were among the best for C. biguttatus. The best-performing mitogenome annotator was MITOS2. Additionally, we were able to recover exogenous mitochondrial DNA from Bos taurus (biting midges host) from a C. biguttatus blood meal sample. CONCLUSIONS: Two novel annotated mitogenome haplotypes for C. sonorensis and C. biguttatus using High-Throughput Sequencing are presented. Current results are useful as the baseline for mitogenome reconstruction of the remaining Culicoides species from single specimens to HTS and genome annotation. Mapping to a species-specific reference mitogenome generated better results for Culicoides mitochondrial genome reconstruction than de novo assembly, while de novo assembly resulted better in the absence of a closely related reference mitogenome. These results have direct implications for molecular-based identification of these vectors of human and zoonotic diseases, setting the basis for using the whole mitochondrial genome as a marker in Culicoides identification.


Assuntos
Ceratopogonidae , Genoma Mitocondrial , Animais , Benchmarking , Bovinos , Ceratopogonidae/genética , Genes Mitocondriais , Genoma Mitocondrial/genética , Humanos , Insetos Vetores/genética
3.
Arch Virol ; 167(4): 1137-1140, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35190886

RESUMO

African swine fever (ASF) is a contagious and deadly viral disease affecting swine of all ages. ASF was first reported in Vietnam in February 2019, and it is now considered endemic in Vietnam. In this study, 122 ASF-positive samples collected from domestic pigs in 28 different provinces of northern, central, and southern Vietnam during outbreaks in 2019-2021 were genetically characterized. The findings confirmed that all ASF virus (ASFV) strains circulating in Vietnam belonged to p72 genotype II, p54 genotype II, CD2v serogroup 8, and CVR gene variant type I. However, further analysis based on the tandem repeat sequences located between I73R and I329L genes revealed that there were three different variants of ASFV, IGR I, II, and III, circulating in the domestic pig population in Vietnam. The IGR II variants were the most prevalent (117/122 strains) and were detected in pigs in all of the provinces tested, followed by IGR III (4/122 strains) and IGR I (1/122 strains). This study confirms for the first time the presence of IGR III variants in Vietnam.


Assuntos
Vírus da Febre Suína Africana , Febre Suína Africana , Febre Suína Africana/epidemiologia , Vírus da Febre Suína Africana/genética , Animais , Surtos de Doenças , Genótipo , Filogenia , Análise de Sequência de DNA , Sus scrofa , Suínos , Vietnã/epidemiologia
4.
Arch Virol ; 167(11): 2143-2149, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-35831756

RESUMO

Lumpy skin disease (LSD) is a serious emerging infectious disease in cattle caused by a virus of the family Poxviridae. According to the Department of Animal Health, LSD first occurred in Vietnam at the end of October 2020 in Cao Bang and Lang Son provinces. So far, the disease has infected over 63,000 animals, resulting in 9170 deaths occurring in 32 different provinces in northern and central Vietnam. In this study, skin samples from lumpy skin disease virus (LSDV)-infected cattle from the northern provinces of Vietnam displaying clinical symptoms including fever (> 40 °C), runny nose, drooling, and skin lesions were used for genetic characterization and histopathology. Genetic analysis of the partial P32 (LSDV074), partial F (LSDV117), complete RPO30 (LSDV035), and complete G-protein-coupled-chemokine-like receptor (GPCR) (LSDV011) genes showed that all Vietnamese LSDV strains belonged to the genus Capripoxvirus and were closely related to LSDV strains isolated in China. Microscopic examination of the skin lesions showed thickening of the epidermal layer of the skin and hair follicles, hyperplasia of sebaceous glands, intracytoplasmic inclusion bodies, and hemorrhages in the mesoderm.


Assuntos
Doenças dos Bovinos , Doença Nodular Cutânea , Vírus da Doença Nodular Cutânea , Animais , Bovinos , Doenças dos Bovinos/epidemiologia , Surtos de Doenças/veterinária , Doença Nodular Cutânea/epidemiologia , Filogenia , Vietnã/epidemiologia
5.
Emerg Infect Dis ; 27(7): 1999-2002, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34153219

RESUMO

In September 2019, high mortality in commercial rabbits was reported in the Greater Accra Region of Ghana. Rabbit hemorrhagic disease virus 2 phylogenetically related to isolates from 2015-2017 outbreaks in the Netherlands was confirmed as the causative agent. The virus has not yet been detected in native rabbits in Ghana.


Assuntos
Infecções por Caliciviridae , Vírus da Doença Hemorrágica de Coelhos , Infecções por Caliciviridae/epidemiologia , Surtos de Doenças , Gana , Humanos , Países Baixos , Filogenia
6.
Arch Virol ; 166(3): 885-890, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33454861

RESUMO

African swine fever (ASF) is a highly infectious disease of pigs caused by African swine fever virus (ASFV). In order to identify potential genetic variations among ASFV strains circulating in Vietnam, 26 ASFV isolates from organs and blood samples collected from domestic pigs from 23 different provinces of northern, central and southern Vietnam during 2019-2020 ASF outbreaks were genetically characterized. Nucleotide sequences were determined for a portion of the B646L (p72) gene, the complete E183L (p54) gene, the variable region of EP402R (CD2v), the central variable region (CVR) of pB602L, and a tandem repeat sequence (TRS) between the I73R and I329L genes. Analysis of the partial B646L (p72) and EP402R (CD2v) gene sequences and the full-length E183L (p54) gene sequence showed that all 26 ASFV isolates belonged to genotype II and serotype VIII and that they were identical to the strain Georgia/2007/1 and all ASFV strains sequenced in China. The TRS between the I73R and I329L genes contained a 10-nucleotide insertion that was observed in the Chinese ASFV strain CN201801 isolated from domestic pigs in 2018, but not in the Georgia/2007/1 and China/Jilin/2018/boar strains isolated from wild boar in China. This is the first intra-epidemic genome analysis reported for the ASFV strains circulating in Vietnam.


Assuntos
Vírus da Febre Suína Africana/genética , Febre Suína Africana/epidemiologia , Variação Genética/genética , Genoma Viral/genética , Vírus da Febre Suína Africana/isolamento & purificação , Sequência de Aminoácidos/genética , Animais , DNA Viral/genética , Mutagênese Insercional/genética , Análise de Sequência de DNA , Sus scrofa/virologia , Suínos , Sequências de Repetição em Tandem/genética , Vietnã/epidemiologia
7.
Emerg Infect Dis ; 25(4): 832-834, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30882321

RESUMO

Epizootic hemorrhagic disease affects wild and domestic ruminants and has recently spread northward within the United States. In September 2017, we detected epizootic hemorrhagic disease virus in wild white-tailed deer, Odocoileus virginianus, in east-central Canada. Culicoides spp. midges of the subgenus Avaritia were the most common potential vectors identified on site.


Assuntos
Doenças dos Animais/epidemiologia , Doenças dos Animais/virologia , Cervos/virologia , Vírus da Doença Hemorrágica Epizoótica , Infecções por Reoviridae/veterinária , Doenças dos Animais/transmissão , Animais , Canadá/epidemiologia , Vírus da Doença Hemorrágica Epizoótica/classificação , Vírus da Doença Hemorrágica Epizoótica/genética , Estudos Soroepidemiológicos , Doenças Transmitidas por Vetores
8.
BMC Genomics ; 17: 277, 2016 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-27044312

RESUMO

BACKGROUND: Cytomegaloviruses belong to a large, ancient, genus of DNA viruses comprised of a wide array of species-specific strains that occur in diverse array of hosts. METHODS: In this study we sequenced the ~217 Kb genome of a cytomegalovirus isolated from a Mauritius cynomolgus macaque, CyCMV Mauritius, and compared it to previously sequenced cytomegaloviruses from a cynomolgus macaque of Filipino origin (CyCMV Ottawa) and two from Indian rhesus macaques (RhCMV 180.92 and RhCMV 68-1). RESULTS: Though more closely related to CyCMV Ottawa, CyCMV Mauritius is less genetically distant from both RhCMV strains than is CyCMV Ottawa. Several individual genes, including homologues of CMV genes RL11B, UL123, UL83b, UL84 and a homologue of mammalian COX-2, show a closer relationship between homologues of CyCMV Mauritius and the RhCMVs than between homologues of CyCMV Mauritius and CyCMV Ottawa. A broader phylogenetic analysis of 12 CMV strains from eight species recovers evolutionary relationships among viral strains that mirror those amongst the host species, further demonstrating co-evolution of host and virus. CONCLUSIONS: Phylogenetic analyses of rhesus and cynomolgus macaque CMV genome sequences demonstrate co-speciation of the virus and host.


Assuntos
Evolução Biológica , Citomegalovirus/classificação , Genoma Viral , Macaca fascicularis/virologia , Macaca mulatta/virologia , Filogenia , Animais , Citomegalovirus/genética , Citomegalovirus/isolamento & purificação , DNA Viral/genética , Análise de Sequência de DNA , Especificidade da Espécie
9.
Viruses ; 16(3)2024 02 20.
Artigo em Inglês | MEDLINE | ID: mdl-38543685

RESUMO

The early detection of classical swine fever (CSF) remains a key challenge, especially when outbreaks are caused by moderate and low-virulent CSF virus (CSFV) strains. Oral fluid is a reliable and cost-effective sample type that is regularly surveilled for endemic diseases in commercial pig herds in North America. Here, we explored the possibility of utilizing oral fluids for the early detection of CSFV incursions in commercial-size pig pens using two independent experiments. In the first experiment, a seeder pig infected with the moderately-virulent CSFV Pinillos strain was used, and in the second experiment, a seeder pig infected with the highly-virulent CSFV Koslov strain was used. Pen-based oral fluid samples were collected daily and individual samples (whole blood, swabs) every other day. All samples were tested by a CSFV-specific real-time RT-PCR assay. CSFV genomic material was detected in oral fluids on the seventh and fourth day post-introduction of the seeder pig into the pen, in the first and second experiments, respectively. In both experiments, oral fluids tested positive before the contact pigs developed viremia, and with no apparent sick pigs in the pen. These results indicate that pen-based oral fluids are a reliable and convenient sample type for the early detection of CSF, and therefore, can be used to supplement the ongoing CSF surveillance activities in North America.


Assuntos
Vírus da Febre Suína Clássica , Peste Suína Clássica , Suínos , Animais , Vírus da Febre Suína Clássica/genética , Viremia/diagnóstico , Viremia/veterinária , Viremia/epidemiologia , Surtos de Doenças/veterinária , Vacinação/veterinária
10.
Viruses ; 16(4)2024 04 07.
Artigo em Inglês | MEDLINE | ID: mdl-38675912

RESUMO

In this paper, we report the characterization of a genetically modified live-attenuated African swine fever virus (ASFV) field strain isolated from Vietnam. The isolate, ASFV-GUS-Vietnam, belongs to p72 genotype II, has six multi-gene family (MGF) genes deleted, and an Escherichia coli GusA gene (GUS) inserted. When six 6-8-week-old pigs were inoculated with ASFV-GUS-Vietnam oro-nasally (2 × 105 TCID50/pig), they developed viremia, mild fever, lethargy, and inappetence, and shed the virus in their oral and nasal secretions and feces. One of the pigs developed severe clinical signs and was euthanized 12 days post-infection, while the remaining five pigs recovered. When ASFV-GUS-Vietnam was inoculated intramuscularly (2 × 103 TCID50/pig) into four 6-8 weeks old pigs, they also developed viremia, mild fever, lethargy, inappetence, and shed the virus in their oral and nasal secretions and feces. Two contact pigs housed together with the four intramuscularly inoculated pigs, started to develop fever, viremia, loss of appetite, and lethargy 12 days post-contact, confirming horizontal transmission of ASFV-GUS-Vietnam. One of the contact pigs died of ASF on day 23 post-contact, while the other one recovered. The pigs that survived the exposure to ASFV-GUS-Vietnam via the mucosal or parenteral route were fully protected against the highly virulent ASFV Georgia 2007/1 challenge. This study showed that ASFV-GUS-Vietnam field isolate is able to induce complete protection in the majority of the pigs against highly virulent homologous ASFV challenge, but has the potential for horizontal transmission, and can be fatal in some animals. This study highlights the need for proper monitoring and surveillance when ASFV live-attenuated virus-based vaccines are used in the field for ASF control in endemic countries.


Assuntos
Vírus da Febre Suína Africana , Febre Suína Africana , Animais , Vírus da Febre Suína Africana/genética , Vírus da Febre Suína Africana/isolamento & purificação , Vírus da Febre Suína Africana/patogenicidade , Vírus da Febre Suína Africana/classificação , Febre Suína Africana/virologia , Suínos , Vietnã , Viremia , Genoma Viral , Genótipo , Deleção de Sequência , Eliminação de Partículas Virais , Filogenia
11.
J Virol ; 86(7): 3626-34, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22258257

RESUMO

Varicella-zoster virus (VZV) is a member of the alphaherpesvirus family and the causative agent of chickenpox and shingles. To determine the utility of cynomolgus macaques (Macaca fascicularis) as a nonhuman primate model to evaluate VZV-based simian immunodeficiency virus/human immunodeficiency virus (SIV/HIV) vaccines, we experimentally inoculated 10 animals with the parental Oka (Oka-P) strain of VZV derived from MeWo or Telo-RF cells. VZV DNA could be detected in the lungs as late as 4 days postinfection, with replicating virus detected by shell vial culture assay in one case. Infection did not result in any overt clinical symptoms but was characterized by humoral and cell-mediated immunity in a time frame and at a magnitude similar to those observed following VZV vaccination in humans. The cell line source of VZV inoculum influenced both the magnitude and polyfunctionality of cell-mediated immunity. Animals mounted a vigorous anamnestic antibody response following a second inoculation 12 weeks later. Inoculations resulted in transient increases in CD4(+) T-cell activation and proliferation, as well as a sustained increase in CD4(+) T cells coexpressing CCR5 and α4ß7 integrin. In contrast to previous failed attempts to successfully utilize attenuated VZV-Oka as an SIV vaccine vector in rhesus macaques due to suboptimal infectivity and cellular immunogenicity, the ability to infect cynomolgus macaques with Oka-P VZV should provide a valuable tool for evaluating VZV-vectored SIV/HIV vaccines.


Assuntos
Varicela/virologia , Modelos Animais de Doenças , Herpesvirus Humano 3/fisiologia , Macaca fascicularis , Animais , Anticorpos Antivirais/imunologia , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD4-Positivos/virologia , Linhagem Celular , Varicela/imunologia , Vetores Genéticos/genética , Vetores Genéticos/fisiologia , Herpesvirus Humano 3/genética , Herpesvirus Humano 3/imunologia , Humanos , Masculino
12.
Arch Virol ; 158(5): 955-65, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23232747

RESUMO

Cynomolgus macaques are widely used as an animal model in biomedical research. We have established an immortalized cynomolgus macaque fibroblast cell line (MSF-T) by transducing primary dermal fibroblasts isolated from a 13-year-old male cynomolgus macaque with a retrovirus vector expressing human telomerase reverse transcriptase (hTERT). The MSF-T cells showed increased telomerase enzyme activity and reached over 200 in vitro passages compared to the non-transduced dermal fibroblasts, which reached senescence after 43 passages. The MSF-T cell line is free of mycoplasma contamination and is permissive to the newly identified cynomolgus macaque cytomegalovirus (CyCMV). CyCMV productively infects MSF-T cells and induces down-regulation of MHC class I expression. The MSF-T cell line will be extremely useful for the propagation of CyCMV and other cynomolgus herspesviruses in host-derived fibroblast cells, allowing for the retention of host-specific viral genes. Moreover, this cell line will be beneficial for many in vitro experiments related to this animal model.


Assuntos
Citomegalovirus/crescimento & desenvolvimento , Fibroblastos/virologia , Animais , Linhagem Celular , Macaca , Telomerase/genética , Telomerase/metabolismo , Transdução Genética , Cultura de Vírus/métodos
13.
Front Vet Sci ; 10: 1286906, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37929283

RESUMO

The ongoing African swine fever (ASF) pandemic continues to have a major impact on global pork production and trade. Since ASF cannot be distinguished from other swine hemorrhagic fevers clinically, ASF-specific laboratory diagnosis is critical. Thus ASF virus (ASFV)-specific monoclonal antibodies (mAbs) are critical for the development of laboratory diagnostics. In this study, we report one ASFV-specific mAb, F88ASF-55, that was generated and characterized. This mAb recognizes the ASFV A137R-encoded protein (pA137R). Epitope mapping results revealed a highly conserved linear epitope recognized by this mAb, corresponding to amino acids 111-125 of pA137R. We explored the potential use of this mAb in diagnostic applications. Using F88ASF-55 as the detection antibody, six ASFV strains were detected in an enzyme-linked immunosorbent assay (ELISA) with low background. In immunohistochemistry (IHC) assays, this mAb specifically recognized ASFV antigens in the submandibular lymph nodes of animals experimentally infected with different ASFV strains. Although not all ASFV genotypes were tested in this study, based on the conserved ASFV epitope targeted by F88ASF-55, it has the potential to detect multiple ASFV genotypes. In conclusion, this newly generated ASFV pA137R-specific mAb has potential value in ASF diagnostic tool development. It can be used in ELISA, IHC, and possibly-immunochromatographic strip assays for ASFV detection. It also suggests that pA137R may be a good target for diagnostic assays to detect ASFV infection.

14.
Viruses ; 15(11)2023 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-38005923

RESUMO

The African swine fever virus (ASFV) is currently causing a world-wide pandemic of a highly lethal disease in domestic swine and wild boar. Currently, recombinant ASF live-attenuated vaccines based on a genotype II virus strain are commercially available in Vietnam. With 25 reported ASFV genotypes in the literature, it is important to understand the molecular basis and usefulness of ASFV genotyping, as well as the true significance of genotypes in the epidemiology, transmission, evolution, control, and prevention of ASFV. Historically, genotyping of ASFV was used for the epidemiological tracking of the disease and was based on the analysis of small fragments that represent less than 1% of the viral genome. The predominant method for genotyping ASFV relies on the sequencing of a fragment within the gene encoding the structural p72 protein. Genotype assignment has been accomplished through automated phylogenetic trees or by comparing the target sequence to the most closely related genotyped p72 gene. To evaluate its appropriateness for the classification of genotypes by p72, we reanalyzed all available genomic data for ASFV. We conclude that the majority of p72-based genotypes, when initially created, were neither identified under any specific methodological criteria nor correctly compared with the already existing ASFV genotypes. Based on our analysis of the p72 protein sequences, we propose that the current twenty-five genotypes, created exclusively based on the p72 sequence, should be reduced to only six genotypes. To help differentiate between the new and old genotype classification systems, we propose that Arabic numerals (1, 2, 8, 9, 15, and 23) be used instead of the previously used Roman numerals. Furthermore, we discuss the usefulness of genotyping ASFV isolates based only on the p72 gene sequence.


Assuntos
Vírus da Febre Suína Africana , Febre Suína Africana , Animais , Febre Suína Africana/epidemiologia , Febre Suína Africana/virologia , Vírus da Febre Suína Africana/genética , Genótipo , Filogenia , Análise de Sequência , Sus scrofa , Suínos
15.
Viruses ; 16(1)2023 12 30.
Artigo em Inglês | MEDLINE | ID: mdl-38257767

RESUMO

In 2007, an outbreak of African swine fever (ASF), a deadly disease of domestic swine and wild boar caused by the African swine fever virus (ASFV), occurred in Georgia and has since spread globally. Historically, ASFV was classified into 25 different genotypes. However, a newly proposed system recategorized all ASFV isolates into 6 genotypes exclusively using the predicted protein sequences of p72. However, ASFV has a large genome that encodes between 150-200 genes, and classifications using a single gene are insufficient and misleading, as strains encoding an identical p72 often have significant mutations in other areas of the genome. We present here a new classification of ASFV based on comparisons performed considering the entire encoded proteome. A curated database consisting of the protein sequences predicted to be encoded by 220 reannotated ASFV genomes was analyzed for similarity between homologous protein sequences. Weights were applied to the protein identity matrices and averaged to generate a genome-genome identity matrix that was then analyzed by an unsupervised machine learning algorithm, DBSCAN, to separate the genomes into distinct clusters. We conclude that all available ASFV genomes can be classified into 7 distinct biotypes.


Assuntos
Vírus da Febre Suína Africana , Febre Suína Africana , Animais , Suínos , Vírus da Febre Suína Africana/genética , Febre Suína Africana/epidemiologia , Aprendizado de Máquina não Supervisionado , Genótipo , Algoritmos
16.
Vet Res Commun ; 47(3): 1773-1776, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-36823481

RESUMO

African swine fever virus (ASFV) causes African swine fever (ASF), a deadly disease affecting both domestic pigs and wild boars. ASF has become endemic in Vietnam since its first appearance in early 2019. Our previous molecular surveillance studies revealed that all the ASFV strains circulating in Vietnam belong to p72 genotype II, p54 genotype II, CD2v serogroup 8, and CVR of B602L gene variant type I. However, the genetic analysis based on the tandem repeat sequences located between I73R and I329L genes revealed three different intergenic region (IGR) variants; I, II, and III. In this study, using ASFV field isolates collected from September 24th to December 27th, 2021, we report, for the first time, novel IGR IV variants circulating in the Vietnamese pig population.


Assuntos
Vírus da Febre Suína Africana , Febre Suína Africana , Doenças dos Suínos , Suínos , Animais , Sus scrofa , Vírus da Febre Suína Africana/genética , Febre Suína Africana/epidemiologia , Febre Suína Africana/genética , DNA Intergênico/genética , Vietnã/epidemiologia , Surtos de Doenças , Filogenia , Genótipo , Doenças dos Suínos/epidemiologia
17.
Parasit Vectors ; 16(1): 201, 2023 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-37316934

RESUMO

BACKGROUND: Culicoides Latreille (Diptera: Ceratopogonidae) is a genus of hematophagous midges feeding on various vertebrate hosts and serving as a vector for numerous pathogens important to livestock and wildlife health. North American pathogens include bluetongue (BT) and epizootic hemorrhagic disease (EHD) viruses. Little is known about Culicoides spp. distribution and abundance and species composition in Ontario, Canada, despite bordering numerous U.S. states with documented Culicoides spp. and BT and EHD virus activity. We sought to characterize Culicoides spp. distribution and abundance and to investigate whether select meteorological and ecological risk factors influenced the abundance of Culicoides biguttatus, C. stellifer, and the subgenus Avaritia trapped throughout southern Ontario. METHODS: From June to October of 2017 to 2018, CDC-type LED light suction traps were placed on twelve livestock-associated sites across southern Ontario. Culicoides spp. collected were morphologically identified to the species level when possible. Associations were examined using negative binomial regression among C. biguttatus, C. stellifer, and subgenus Avaritia abundance, and select factors: ambient temperature, rainfall, primary livestock species, latitude, and habitat type. RESULTS: In total, 33,905 Culicoides spp. midges were collected, encompassing 14 species from seven subgenera and one species group. Culicoides sonorensis was collected from three sites during both years. Within Ontario, the northern trapping locations had a pattern of seasonal peak abundance in August (2017) and July (2018), and the southern locations had abundance peaks in June for both years. Culicoides biguttatus, C. stellifer, and subgenus Avaritia were significantly more abundant if ovine was the primary livestock species at trapping sites (compared to bovine). Culicoides stellifer and subgenus Avaritia were significantly more abundant at mid- to high-temperature ranges on trap days (i.e., 17.3-20.2 and 20.3-31.0 °C compared to 9.5-17.2 °C). Additionally, subgenus Avaritia were significantly more abundant if rainfall 4 weeks prior was between 2.7 and 20.1 mm compared to 0.0 mm and if rainfall 8 weeks prior was between 0.1 and 2.1 mm compared to 0.0 mm. CONCLUSIONS: Results from our study describe Culicoides spp. distribution in southern Ontario, the potential for spread and maintenance of EHD and BT viruses, and concurrent health risks to livestock and wildlife in southern Ontario in reference to certain meteorological and ecological risk factors. We identified that Culicoides spp. are diverse in this province, and appear to be distinctly distributed spatially and temporally. The livestock species present, temperature, and rainfall appear to have an impact on the abundance of C. biguttatus, C. stellifer, and subgenus Avaritia trapped. These findings could help inform targeted surveillance, control measures, and the development of management guides for Culicoides spp. and EHD and BT viruses in southern Ontario, Canada.


Assuntos
Vírus Bluetongue , Bluetongue , Ceratopogonidae , Vírus da Doença Hemorrágica Epizoótica , Animais , Bovinos , Ovinos , Ontário , Animais Selvagens , Gado , Carneiro Doméstico
18.
Pathogens ; 12(3)2023 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-36986314

RESUMO

African swine fever (ASF) is currently Vietnam's most economically significant swine disease. The first ASF outbreak in Vietnam was reported in February 2019. In this study, VNUA/HY/ASF1 strain isolated from the first ASF outbreak was used to infect 10 eight-week-old pigs orally with 103 HAD50 per animal. The pigs were observed daily for clinical signs, and whole blood samples were collected from each animal for viremia detection. Dead pigs were subjected to full post-mortem analyses. All 10 pigs displayed acute or subacute clinical signs and succumbed to the infection between 10 to 27 (19.8 ± 4.66) days post-inoculation (dpi). The onset of clinical signs started around 4-14 dpi. Viremia was observed in pigs from 6-16 dpi (11.2 ± 3.55). Enlarged, hyperemic, and hemorrhagic lymph nodes, enlarged spleen, pneumonia, and hydropericardium were observed at post-mortem examinations.

19.
Microbiol Spectr ; : e0245722, 2023 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-36719206

RESUMO

Since its emergence in late 2019, the coronavirus disease 2019 (COVID-19) pandemic has caused severe disruption to key aspects of human life globally and highlighted the need for timely, adaptive, and accessible pandemic response strategies. Here, we introduce the cell-free dot blot (CFDB) method, a practical and ultra-low-cost immune diagnostic platform capable of rapid response and mass immunity screening for the current and future pandemics. Similar in mechanism to the widely used enzyme-linked immunosorbent assays (ELISAs), our method is novel and advantageous in that (i) it uses linear DNA to produce the target viral antigen fused to a SpyTag peptide in a cell-free expression system without the need for traditional cloning and antigen purification, (ii) it uses SpyCatcher2-Apex2, an Escherichia coli-produced peroxidase conjugate as a universal secondary detection reagent, obviating the need for commercial or sophisticated enzyme conjugates, and (iii) sera are spotted directly on a nitrocellulose membrane, enabling a simple "dipping" mechanism for downstream incubation and washing steps, as opposed to individual processing of wells in a multiwell plate. To demonstrate the utility of our method, we performed CFDB to detect anti-severe acute respiratory syndrome coronavirus 2 nucleocapsid protein antibodies in precharacterized human sera (23 negative and 36 positive for COVID-19) and hamster sera (16 negative and 36 positive for COVID-19), including independent testing at a collaborating laboratory, and we show assay performance comparable to that of conventional ELISAs. At a similar capacity to 96-well plate ELISA kits, one CFDB assay costs only ~$3 USD. We believe that CFDB can become a valuable pandemic response tool for adaptive and accessible sero-surveillance in human and animal populations. IMPORTANCE The recent COVID-19 pandemic has highlighted the need for diagnostic platforms that are rapidly adaptable, affordable, and accessible globally, especially for low-resource settings. To address this need, we describe the development and functional validation of a novel immunoassay technique termed the cell-free dot blot (CFDB) method. Based on the principles of cell-free synthetic biology and alternative dot blotting procedures, our CFDB immunoassay is designed to provide for timely, practical, and low-cost responses to existing and emerging public health threats, such as the COVID-19 pandemic, at a similar throughput and comparable performance as conventional ELISAs. Notably, the molecular detection reagents used in CFDB can be produced rapidly in-house, using established protocols and basic laboratory infrastructure, minimizing reliance on strained commercial reagents. In addition, the materials and imaging instruments required for CFDB are the same as those used for common Western blotting experiments, further expanding the reach of CFDB in decentralized facilities.

20.
Viruses ; 15(8)2023 08 11.
Artigo em Inglês | MEDLINE | ID: mdl-37632064

RESUMO

African swine fever (ASF) is a lethal disease of domestic pigs that has been causing outbreaks for over a century in Africa ever since its first discovery in 1921. Since 1957, there have been sporadic outbreaks outside of Africa; however, no outbreak has been as devastating and as far-reaching as the current pandemic that originated from a 2007 outbreak in the Republic of Georgia. Derivatives with a high degree of similarity to the progenitor strain, ASFV-Georgia/2007, have been sequenced from various countries in Europe and Asia. However, the current strains circulating in Africa are largely unknown, and 24 different genotypes have been implicated in different outbreaks. In this study, ASF isolates were collected from samples from swine suspected of dying from ASF on farms in Ghana in early 2022. While previous studies determined that the circulating strains in Ghana were p72 Genotype I, we demonstrate here that the strains circulating in 2022 were derivatives of the p72 Genotype II pandemic strain. Therefore, this study demonstrates for the first time the emergence of Genotype II ASFV in Ghana.


Assuntos
Vírus da Febre Suína Africana , Febre Suína Africana , Animais , Suínos , Vírus da Febre Suína Africana/genética , Gana/epidemiologia , Febre Suína Africana/epidemiologia , Genótipo , Sus scrofa
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA