Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Exp Physiol ; 108(11): 1376-1385, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37642495

RESUMO

Sleep-disordered breathing is a respiratory disorder commonly experienced by pregnant women. The recurrent hypoxaemic events associated with sleep-disordered breathing have deleterious consequences for the mother and fetus. Adult male (but not female) rats born to dams subjected to gestational intermittent hypoxia (GIH) have a higher resting blood pressure than control animals and show behavioural/neurodevelopmental disorders. The origin of this persistent, sex-specific effect of GIH in offspring is unknown, but disruption of the neuroendocrine stress pathways is a key mechanism by which gestational stress increases disease risk in progeny. Using FosB immunolabelling as a chronic marker of neuronal activation, we determined whether GIH augments basal expression of FosB in the perikaryas of cells in the paraventricular nucleus of the hypothalamus (PVN), a key structure in the regulation of the stress response and blood pressure. From gestational day 10, female rats were subjected to GIH for 8 h/day (light phase) until the day before delivery (gestational day 21); GIH consisted of 2 min hypoxic bouts (10.5% O2 ) alternating with normoxia. Control rats were exposed to intermittent normoxia over the same period (GNX). At adulthood (10-15 weeks), the brains of male and female rats were harvested for FosB immunohistochemistry. In males, GIH augmented PVN FosB labelling density by 30%. Conversely, PVN FosB density in GIH females was 28% lower than that of GNX females. We conclude that GIH has persistent and sex-specific impacts on the development of stress pathways, thereby offering a plausible mechanism by which GIH can disturb neural development and blood pressure homeostasis in adulthood. NEW FINDINGS: What is the central question of this study? In pregnant women, sleep apnoea increases the risk of disease for the offspring at various life stages. Given that gestational stress disrupts the programming of the stress pathways, we determined whether exposing female rats to gestational intermittent hypoxia (GIH) activates hypothalamic neurons regulating the stress response in adult rats. What is the main finding and its importance? Using FosB immunolabelling as a marker of marker of neuronal activation, we showed that GIH augmented basal activation of the paraventricular nucleus of the hypothalamus in males, but not females. Disruption of the stress pathways is a new hypothesis to explain the persistent and sex-specific impacts of GIH on offspring health.


Assuntos
Hipertensão , Síndromes da Apneia do Sono , Animais , Feminino , Humanos , Masculino , Gravidez , Ratos , Hipotálamo/metabolismo , Hipóxia , Núcleo Hipotalâmico Paraventricular/metabolismo , Ratos Sprague-Dawley
2.
Front Physiol ; 14: 1183933, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37265841

RESUMO

CO2 is a fundamental component of living matter. This chemical signal requires close monitoring to ensure proper match between metabolic production and elimination by lung ventilation. Besides ventilatory adjustments, CO2 can also trigger innate behavioral and physiological responses associated with fear and escape but the changes in brain CO2/pH required to induce ventilatory adjustments are generally lower than those evoking fear and escape. However, for patients suffering from panic disorder (PD), the thresholds for CO2-evoked hyperventilation, fear and escape are reduced and the magnitude of those reactions are excessive. To explain these clinical observations, Klein proposed the false suffocation alarm hypothesis which states that many spontaneous panics occur when the brain's suffocation monitor erroneously signals a lack of useful air, thereby maladaptively triggering an evolved suffocation alarm system. After 30 years of basic and clinical research, it is now well established that anomalies in respiratory control (including the CO2 sensing system) are key to PD. Here, we explore how a stress-related affective disorder such as PD can disrupt respiratory control. We discuss rodent models of PD as the concepts emerging from this research has influenced our comprehension of the CO2 chemosensitivity network, especially structure that are not located in the medulla, and how factors such as stress and biological sex modulate its functionality. Thus, elucidating why hormonal fluctuations can lead to excessive responsiveness to CO2 offers a unique opportunity to gain insights into the neuroendocrine mechanisms regulating this key aspect of respiratory control and the pathophysiology of respiratory manifestations of PD.

4.
Biol Psychol ; 170: 108307, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35278529

RESUMO

The amygdala is mainly known for its role in the pathogenesis of anxiety and the initiation of fear responses. However, there is growing evidence showing that the amygdala's ability to respond to internal stimuli such as CO2 is limited, thereby challenging its role in the brain-behavior relationship. Based on these results and the strong inhibitory connections between the central nucleus of the amygdala and key brainstem areas regulating the reflexive respiratory responses to CO2, Feinstein et al. propose amygdala-driven apnea as a novel mechanism in the chemoreceptive origin of anxiety.


Assuntos
Apneia , Neurobiologia , Tonsila do Cerebelo/fisiologia , Encéfalo , Dióxido de Carbono , Humanos
5.
Clin Chest Med ; 42(3): 391-405, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34353446

RESUMO

The respiratory system of women and men develops and functions in distinct neuroendocrine milieus. Despite differences in anatomy and neural control, homeostasis of arterial blood gases is ensured in healthy individuals regardless of sex. This convergence in function differs from the sex-based differences observed in many respiratory diseases. Sleep-disordered breathing (SDB) results mainly from episodes of upper airway closure. This complex and multifactorial respiratory disorder shows significant sexual dimorphism in its clinical manifestations and comorbidities. Guided by recent progress from basic research, this review discusses the hypothesis that stress is necessary to reveal the sexual dimorphism of SDB.


Assuntos
Transtornos Respiratórios , Síndromes da Apneia do Sono , Comorbidade , Feminino , Humanos , Masculino , Caracteres Sexuais , Sono , Síndromes da Apneia do Sono/epidemiologia
6.
Front Physiol ; 12: 781662, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35002764

RESUMO

Excessive carotid body responsiveness to O2 and/or CO2/H+ stimuli contributes to respiratory instability and apneas during sleep. In hypogonadal men, testosterone supplementation may increase the risk of sleep-disordered breathing; however, the site of action is unknown. The present study tested the hypothesis that testosterone supplementation potentiates carotid body responsiveness to hypoxia in adult male rats. Because testosterone levels decline with age, we also determined whether these effects were age-dependent. In situ hybridization determined that androgen receptor mRNA was present in the carotid bodies and caudal nucleus of the solitary tract of adult (69 days old) and aging (193-206 days old) male rats. In urethane-anesthetized rats injected with testosterone propionate (2 mg/kg; i.p.), peak breathing frequency measured during hypoxia (FiO2 = 0.12) was 11% greater vs. the vehicle treatment group. Interestingly, response intensity following testosterone treatment was positively correlated with animal age. Exposing ex vivo carotid body preparations from young and aging rats to testosterone (5 nM, free testosterone) 90-120 min prior to testing showed that the carotid sinus nerve firing rate during hypoxia (5% CO2 + 95% N2; 15 min) was augmented in both age groups as compared to vehicle (<0.001% DMSO). Ventilatory measurements performed using whole body plethysmography revealed that testosterone supplementation (2 mg/kg; i.p.) 2 h prior reduced apnea frequency during sleep. We conclude that in healthy rats, age-dependent potentiation of the carotid body's response to hypoxia by acute testosterone supplementation does not favor the occurrence of apneas but rather appears to stabilize breathing during sleep.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA