RESUMO
Plasma membrane repair is a fundamental homeostatic process of eukaryotic cells. Here, we report a new function for the conserved cytoskeletal proteins known as septins in the repair of cells perforated by pore-forming toxins or mechanical disruption. Using a silencing RNA screen, we identified known repair factors (e.g. annexin A2, ANXA2) and novel factors such as septin 7 (SEPT7) that is essential for septin assembly. Upon plasma membrane injury, the septin cytoskeleton is extensively redistributed to form submembranous domains arranged as knob and loop structures containing F-actin, myosin IIA, S100A11, and ANXA2. Formation of these domains is Ca2+-dependent and correlates with plasma membrane repair efficiency. Super-resolution microscopy revealed that septins and F-actin form intertwined filaments associated with ANXA2. Depletion of SEPT7 prevented ANXA2 recruitment and formation of submembranous actomyosin domains. However, ANXA2 depletion had no effect on domain formation. Collectively, our data support a novel septin-based mechanism for resealing damaged cells, in which the septin cytoskeleton plays a key structural role in remodeling the plasma membrane by promoting the formation of SEPT/F-actin/myosin IIA/ANXA2/S100A11 repair domains.
Assuntos
Actinas , Anexina A2 , Membrana Celular , Citoesqueleto , Septinas , Septinas/metabolismo , Septinas/genética , Humanos , Anexina A2/metabolismo , Anexina A2/genética , Membrana Celular/metabolismo , Citoesqueleto/metabolismo , Actinas/metabolismo , Miosina não Muscular Tipo IIA/metabolismo , Miosina não Muscular Tipo IIA/genética , Células HeLa , Cálcio/metabolismo , Proteínas S100/metabolismo , Proteínas S100/genética , Proteínas de Ciclo Celular/metabolismo , Proteínas de Ciclo Celular/genéticaRESUMO
As SARS-CoV-2 variants of concern (VoCs) that evade immunity continue to emerge, next-generation adaptable COVID-19 vaccines which protect the respiratory tract and provide broader, more effective, and durable protection are urgently needed. Here, we have developed one such approach, a highly efficacious, intranasally delivered, trivalent measles-mumps-SARS-CoV-2 spike (S) protein (MMS) vaccine candidate that induces robust systemic and mucosal immunity with broad protection. This vaccine candidate is based on three components of the MMR vaccine, a measles virus Edmonston and the two mumps virus strains [Jeryl Lynn 1 (JL1) and JL2] that are known to provide safe, effective, and long-lasting protective immunity. The six proline-stabilized prefusion S protein (preS-6P) genes for ancestral SARS-CoV-2 WA1 and two important SARS-CoV-2 VoCs (Delta and Omicron BA.1) were each inserted into one of these three viruses which were then combined into a trivalent "MMS" candidate vaccine. Intranasal immunization of MMS in IFNAR1-/- mice induced a strong SARS-CoV-2-specific serum IgG response, cross-variant neutralizing antibodies, mucosal IgA, and systemic and tissue-resident T cells. Immunization of golden Syrian hamsters with MMS vaccine induced similarly high levels of antibodies that efficiently neutralized SARS-CoV-2 VoCs and provided broad and complete protection against challenge with any of these VoCs. This MMS vaccine is an efficacious, broadly protective next-generation COVID-19 vaccine candidate, which is readily adaptable to new variants, built on a platform with a 50-y safety record that also protects against measles and mumps.
Assuntos
COVID-19 , Sarampo , Caxumba , Cricetinae , Animais , Humanos , Camundongos , SARS-CoV-2/genética , Vacinas contra COVID-19 , COVID-19/prevenção & controle , Vacina contra Sarampo-Caxumba-Rubéola , Anticorpos Antivirais , Anticorpos Amplamente Neutralizantes , Imunoglobulina G , Mesocricetus , Anticorpos Neutralizantes , Glicoproteína da Espícula de Coronavírus/genéticaRESUMO
Severe acute respiratory syndrome coronavirus 2 (SARSCoV-2) is a worldwide health concern, and new treatment strategies are needed. Targeting inflammatory innate immunity pathways holds therapeutic promise, but effective molecular targets remain elusive. Here, we show that human caspase-4 (CASP4) and its mouse homolog, caspase-11 (CASP11), are up-regulated in SARSCoV-2 infections and that CASP4 expression correlates with severity of SARSCoV-2 infection in humans. SARSCoV-2infected Casp11−/− mice were protected from severe weight loss and lung pathology, including blood vessel damage, compared to wild-type (WT) mice and mice lacking the caspase downstream effector gasdermin-D (Gsdmd−/−). Notably, viral titers were similar regardless of CASP11 knockout. Global transcriptomics of SARSCoV-2infected WT, Casp11−/−, and Gsdmd−/− lungs identified restrained expression of inflammatory molecules and altered neutrophil gene signatures in Casp11−/− mice. We confirmed that protein levels of inflammatory mediators interleukin (IL)-1ß, IL-6, and CXCL1, as well as neutrophil functions, were reduced in Casp11−/− lungs. Additionally, Casp11−/− lungs accumulated less von Willebrand factor, a marker for endothelial damage, but expressed more Kruppel-Like Factor 2, a transcription factor that maintains vascular integrity. Overall, our results demonstrate that CASP4/11 promotes detrimental SARSCoV-2induced inflammation and coagulopathy, largely independently of GSDMD, identifying CASP4/11 as a promising drug target for treatment and prevention of severe COVID-19.
Assuntos
COVID-19 , Caspases Iniciadoras/metabolismo , SARS-CoV-2 , Tromboinflamação , Animais , COVID-19/enzimologia , COVID-19/patologia , Caspases Iniciadoras/genética , Progressão da Doença , Humanos , Pulmão/patologia , Camundongos , Camundongos Knockout , Índice de Gravidade de Doença , Tromboinflamação/enzimologia , Tromboinflamação/genéticaRESUMO
Neuroinflammation and accumulation of Amyloid Beta (Aß) accompanied by deterioration of special memory are hallmarks of Alzheimer's disease (AD). Effective preventative and treatment options for AD are still needed. Microglia in AD brains are characterized by elevated levels of microRNA-17 (miR-17), which is accompanied by defective autophagy, Aß accumulation, and increased inflammatory cytokine production. However, the effect of targeting miR-17 on AD pathology and memory loss is not clear. To specifically inhibit miR-17 in microglia, we generated mannose-coated lipid nanoparticles (MLNPs) enclosing miR-17 antagomir (Anti-17 MLNPs), which are targeted to mannose receptors readily expressed on microglia. We used a 5XFAD mouse model (AD) that recapitulates many AD-related phenotypes observed in humans. Our results show that Anti-17 MLNPs, delivered to 5XFAD mice by intra-cisterna magna injection, specifically deliver Anti-17 to microglia. Anti-17 MLNPs downregulated miR-17 expression in microglia but not in neurons, astrocytes, and oligodendrocytes. Anti-17 MLNPs attenuated inflammation, improved autophagy, and reduced Aß burdens in the brains. Additionally, Anti-17 MLNPs reduced the deterioration in spatial memory and decreased anxiety-like behavior in 5XFAD mice. Therefore, targeting miR-17 using MLNPs is a viable strategy to prevent several AD pathologies. This selective targeting strategy delivers specific agents to microglia without the adverse off-target effects on other cell types. Additionally, this approach can be used to deliver other molecules to microglia and other immune cells in other organs.
Assuntos
Doença de Alzheimer , Encéfalo , Modelos Animais de Doenças , Manose , Camundongos Transgênicos , MicroRNAs , Microglia , Nanopartículas , Animais , Doença de Alzheimer/metabolismo , Doença de Alzheimer/tratamento farmacológico , MicroRNAs/metabolismo , Nanopartículas/administração & dosagem , Camundongos , Microglia/metabolismo , Microglia/efeitos dos fármacos , Manose/farmacologia , Encéfalo/metabolismo , Encéfalo/efeitos dos fármacos , Peptídeos beta-Amiloides/metabolismo , Lipídeos , Masculino , Antagomirs/farmacologia , Antagomirs/administração & dosagemRESUMO
Alum, used as an adjuvant in injected vaccines, promotes T helper 2 (Th2) and serum antibody (Ab) responses. However, it fails to induce secretory immunoglobulin (Ig) A (SIgA) in mucosal tissues and is poor in inducing Th1 and cell-mediated immunity. Alum stimulates interleukin 1 (IL-1) and the recruitment of myeloid cells, including neutrophils. We investigated whether neutrophil elastase regulates the adjuvanticity of alum, and whether a strategy targeting neutrophil elastase could improve responses to injected vaccines. Mice coadministered a pharmacological inhibitor of elastase, or lacking elastase, developed high-affinity serum IgG and IgA antibodies after immunization with alum-adsorbed protein vaccines, including the spike protein of severe acute respiratory syndrome coronavirus 2 (SARS-Cov-2). These mice also developed broader antigen-specific CD4+ T cell responses, including high Th1 and T follicular helper (Tfh) responses. Interestingly, in the absence of elastase activity, mucosal SIgA responses were induced after systemic immunization with alum as adjuvant. Importantly, lack or suppression of elastase activity enhanced the magnitude of anti-SARS-CoV-2 spike subunit 1 (S1) antibodies, and these antibodies reacted with the same epitopes of spike 1 protein as sera from COVID-19 patients. Therefore, suppression of neutrophil elastase could represent an attractive strategy for improving the efficacy of alum-based injected vaccines for the induction of broad immunity, including mucosal immunity.
Assuntos
Adjuvantes Imunológicos/farmacologia , Compostos de Alúmen/farmacologia , COVID-19/imunologia , COVID-19/terapia , Inibidores Enzimáticos/farmacologia , Elastase de Leucócito/antagonistas & inibidores , SARS-CoV-2/imunologia , Animais , Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/imunologia , Formação de Anticorpos/efeitos dos fármacos , COVID-19/metabolismo , Células HEK293 , Humanos , Imunidade Inata/efeitos dos fármacos , Imunidade Inata/imunologia , Imunidade nas Mucosas/efeitos dos fármacos , Imunidade nas Mucosas/imunologia , Imunoglobulina A/imunologia , Elastase de Leucócito/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , SARS-CoV-2/efeitos dos fármacos , Glicoproteína da Espícula de Coronavírus/imunologia , Suínos , Células Th1/imunologia , Tratamento Farmacológico da COVID-19RESUMO
Innate immune cells, epithelial cells, and many other cell types are capable of detecting infection or tissue injury, thus mounting regulated immune response. Inflammasomes are highly sophisticated and effective orchestrators of innate immunity. These oligomerized multiprotein complexes are at the center of various innate immune pathways, including modulation of the cytoskeleton, production and maturation of cytokines, and control of bacterial growth and cell death. Inflammasome assembly often results in caspase-1 activation, which is an inflammatory caspase that is involved in pyroptotic cell death and release of inflammatory cytokines in response to pathogen patterns and endogenous danger stimuli. However, the nature of stimuli and inflammasome components are diverse. Caspase-1 activation mediated release of mature IL-1ß and IL-18 in response to canonical stimuli initiated by NOD-like receptor (NLR), and apoptosis-associated speck-like protein containing a caspase recruitment domain (ASC). On the other hand, caspase-11 delineates a non-canonical inflammasome that promotes pyroptotic cell death and non-pyroptotic functions in response to non-canonical stimuli. Caspase-11 in mice and its homologues in humans (caspase-4/5) belong to caspase-1 family of cysteine proteases, and play a role in inflammation. Knockout mice provided new genetic tools to study inflammatory caspases and revealed the role of caspase-11 in mediating septic shock in response to lethal doses of lipopolysaccharide (LPS). Recognition of LPS mediates caspase-11 activation, which promotes a myriad of downstream effects that include pyroptotic and non-pyroptotic effector functions. Therefore, the physiological functions of caspase-11 are much broader than its previously established roles in apoptosis and cytokine maturation. Inflammation induced by exogenous or endogenous agents can be detrimental and, if excessive, can result in organ and tissue damage. Consequently, the existence of sophisticated mechanisms that tightly regulate the specificity and sensitivity of inflammasome pathways provides a fine-tuning balance between adequate immune response and minimal tissue damage. In this review, we summarize effector functions of caspase-11.
Assuntos
Caspases , Inflamassomos , Animais , Caspase 1 , Caspases Iniciadoras , Camundongos , Camundongos Knockout , PiroptoseRESUMO
BACKGROUND: Abnormal macrophage function caused by dysfunctional cystic fibrosis transmembrane conductance regulator (CFTR) is a critical contributor to chronic airway infections and inflammation in people with cystic fibrosis (PWCF). Elexacaftor/tezacaftor/ivacaftor (ETI) is a new CFTR modulator therapy for PWCF. Host-pathogen and clinical responses to CFTR modulators are poorly described. We sought to determine how ETI impacts macrophage CFTR function, resulting effector functions and relationships to clinical outcome changes. METHODS: Clinical information and/or biospecimens were obtained at ETI initiation and 3, 6, 9 and 12â months post-ETI in 56 PWCF and compared with non-CF controls. Peripheral blood monocyte-derived macrophages (MDMs) were isolated and functional assays performed. RESULTS: ETI treatment was associated with increased CF MDM CFTR expression, function and localisation to the plasma membrane. CF MDM phagocytosis, intracellular killing of CF pathogens and efferocytosis of apoptotic neutrophils were partially restored by ETI, but inflammatory cytokine production remained unchanged. Clinical outcomes including increased forced expiratory volume in 1â s (+10%) and body mass index (+1.0â kg·m-2) showed fluctuations over time and were highly individualised. Significant correlations between post-ETI MDM CFTR function and sweat chloride levels were observed. However, MDM CFTR function correlated with clinical outcomes better than sweat chloride. CONCLUSION: ETI is associated with unique changes in innate immune function and clinical outcomes.
Assuntos
Fibrose Cística , Humanos , Fibrose Cística/tratamento farmacológico , Regulador de Condutância Transmembrana em Fibrose Cística/genética , Regulador de Condutância Transmembrana em Fibrose Cística/metabolismo , Cloretos/metabolismo , Agonistas dos Canais de Cloreto/uso terapêutico , Mutação , Macrófagos/metabolismoRESUMO
Asthma is an inflammatory lung disorder characterized by mucus hypersecretion, cellular infiltration, and bronchial hyper-responsiveness. House dust mites (HDM) are the most prevalent cause of allergic sensitization. Canonical and noncanonical inflammasomes are multiprotein complexes that assemble in response to pathogen or danger-associated molecular patterns (PAMPs or DAMPs). Murine caspase-11 engages the noncanonical inflammasome. We addressed the role of caspase-11 in mediating host responses to HDM and subsequent allergic inflammation using caspase-11-/- mice, which lack caspase-11 while express caspase-1. We found that HDM induce caspase-11 expression in vitro. The presence of IL-4 and IL-13 promote caspase-11 expression. Additionally, caspase-11-/- macrophages show reduced release of IL-6, IL-12, and KC, and express lower levels of costimulatory molecules (e.g., CD40, CD86 and MHCII) in response to HDM stimulation. Notably, HDM sensitization of caspase-11-/- mice resulted in similar levels of IgE responses and hypothermia in response to nasal HDM challenge compared to WT. However, analysis of cell numbers and cytokines in bronchiolar alveolar lavage fluid (BALF) and histopathology of representative lung segments demonstrate altered inflammatory responses and reduced neutrophilia in the airways of the caspase-11-/- mice. These findings indicate that caspase-11 regulates airway inflammation in response to HDM exposure.
Assuntos
Caspases Iniciadoras/imunologia , Hipersensibilidade/imunologia , Pneumonia/imunologia , Pyroglyphidae/imunologia , Animais , Camundongos , Camundongos Endogâmicos C57BL , Camundongos KnockoutRESUMO
Inflammasomes are multiprotein complexes that include members of the NLR (nucleotide-binding domain leucine-rich repeat containing) family and caspase-1. Once bacterial molecules are sensed within the macrophage, the inflammasome is assembled, mediating the activation of caspase-1. Caspase-11 mediates caspase-1 activation in response to lipopolysaccharide and bacterial toxins, and yet its role during bacterial infection is unknown. Here, we demonstrated that caspase-11 was dispensable for caspase-1 activation in response to Legionella, Salmonella, Francisella, and Listeria. We also determined that active mouse caspase-11 was required for restriction of L. pneumophila infection. Similarly, human caspase-4 and caspase-5, homologs of mouse caspase-11, cooperated to restrict L. pneumophila infection in human macrophages. Caspase-11 promoted the fusion of the L. pneumophila vacuole with lysosomes by modulating actin polymerization through cofilin. However, caspase-11 was dispensable for the fusion of lysosomes with phagosomes containing nonpathogenic bacteria, uncovering a fundamental difference in the trafficking of phagosomes according to their cargo.
Assuntos
Actinas/metabolismo , Bactérias/imunologia , Caspases/metabolismo , Lisossomos/metabolismo , Fagossomos/metabolismo , Multimerização Proteica , Fatores de Despolimerização de Actina/metabolismo , Animais , Bactérias/crescimento & desenvolvimento , Infecções Bacterianas/imunologia , Infecções Bacterianas/metabolismo , Caspase 1/deficiência , Caspase 1/genética , Caspase 1/metabolismo , Caspases/deficiência , Caspases/genética , Caspases Iniciadoras , Humanos , Macrófagos/imunologia , Macrófagos/metabolismo , Macrófagos/microbiologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Fagossomos/microbiologia , FosforilaçãoRESUMO
Methicillin-resistant Staphylococcus aureus (MRSA) is a growing health concern due to increasing resistance to antibiotics. As a facultative intracellular pathogen, MRSA is capable of persisting within professional phagocytes including macrophages. Here, we identify a role for CASP11 in facilitating MRSA survival within murine macrophages. We show that MRSA actively prevents the recruitment of mitochondria to the vicinity of the vacuoles they reside in to avoid intracellular demise. This process requires CASP11 since its deficiency allows increased association of MRSA-containing vacuoles with mitochondria. The induction of mitochondrial superoxide by antimycin A (Ant A) improves MRSA eradication in casp11-/- cells, where mitochondria remain in the vicinity of the bacterium. In WT macrophages, Ant A does not affect MRSA persistence. When mitochondrial dissociation is prevented by the actin depolymerizing agent cytochalasin D, Ant A effectively reduces MRSA numbers. Moreover, the absence of CASP11 leads to reduced cleavage of CASP1, IL-1ß, and CASP7, as well as to reduced production of CXCL1/KC. Our study provides a new role for CASP11 in promoting the persistence of Gram-positive bacteria.
Assuntos
Caspases Iniciadoras/metabolismo , Macrófagos/imunologia , Staphylococcus aureus Resistente à Meticilina/patogenicidade , Mitocôndrias/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Infecções Estafilocócicas/imunologia , Animais , Antibacterianos/farmacologia , Antimicina A/farmacologia , Caspases Iniciadoras/genética , Células Cultivadas , Macrófagos/microbiologia , Staphylococcus aureus Resistente à Meticilina/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos C57BL , Infecções Estafilocócicas/microbiologia , Vacúolos/metabolismoRESUMO
Accurate identification of lipids in biological samples is a key step in lipidomics studies. Multidimensional nuclear magnetic resonance (NMR) spectroscopy is a powerful analytical tool for this purpose as it provides comprehensive structural information on lipid composition at atomic resolution. However, the interpretation of NMR spectra of complex lipid mixtures is currently hampered by limited spectral resolution and the absence of a customized lipid NMR database along with user-friendly spectral analysis tools. We introduce a new two-dimensional (2D) NMR metabolite database "COLMAR Lipids" that was specifically curated for hydrophobic metabolites presently containing 501 compounds with accurate experimental 2D 13C-1H heteronuclear single quantum coherence (HSQC) chemical shift data measured in CDCl3. A new module in the public COLMAR suite of NMR web servers was developed for the (semi)automated analysis of complex lipidomics mixtures (http://spin.ccic.osu.edu/index.php/colmarm/index2). To obtain 2D HSQC spectra with the necessary high spectral resolution along both 13C and 1H dimensions, nonuniform sampling in combination with pure shift spectroscopy was applied allowing the extraction of an abundance of unique cross-peaks belonging to hydrophobic compounds in complex lipidomics mixtures. As shown here, this information is critical for the unambiguous identification of underlying lipid molecules by means of the new COLMAR Lipids web server, also in combination with mass spectrometry, as is demonstrated for Caco-2 cell and lung tissue cell extracts.
Assuntos
Lipidômica , Lipídeos , Células CACO-2 , Humanos , Espectroscopia de Ressonância Magnética , Espectrometria de Massas , MetabolômicaRESUMO
Cystic fibrosis (CF), one of the most common human genetic diseases worldwide, is caused by a defect in the CF transmembrane conductance regulator (CFTR). Patients with CF are highly susceptible to infections caused by opportunistic pathogens (including Burkholderia cenocepacia), which induce excessive lung inflammation and lead to the eventual loss of pulmonary function. Abundant neutrophil recruitment into the lung is a key characteristic of bacterial infections in CF patients. In response to infection, inflammatory neutrophils release reactive oxygen species and toxic proteins, leading to aggravated lung tissue damage in patients with CF. The present study shows a defect in reactive oxygen species production by mouse Cftr-/- , human F508del-CFTR, and CF neutrophils; this results in reduced antimicrobial activity against B. cenocepacia Furthermore, dysregulated Ca2+ homeostasis led to increased intracellular concentrations of Ca2+ that correlated with significantly diminished NADPH oxidase response and impaired secretion of neutrophil extracellular traps in human CF neutrophils. Functionally deficient human CF neutrophils recovered their antimicrobial killing capacity following treatment with pharmacological inhibitors of Ca2+ channels and CFTR channel potentiators. Our findings suggest that regulation of neutrophil Ca2+ homeostasis (via CFTR potentiation or by the regulation of Ca2+ channels) can be used as a new therapeutic approach for reestablishing immune function in patients with CF.
Assuntos
Infecções por Burkholderia/imunologia , Burkholderia cenocepacia/fisiologia , Regulador de Condutância Transmembrana em Fibrose Cística/genética , Fibrose Cística/imunologia , Mutação/genética , Neutrófilos/imunologia , Pneumonia/imunologia , Adolescente , Animais , Cálcio/metabolismo , Canais de Cálcio/metabolismo , Sinalização do Cálcio , Criança , Fibrose Cística/genética , Regulador de Condutância Transmembrana em Fibrose Cística/metabolismo , Feminino , Homeostase , Humanos , Imunidade , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , NADPH Oxidases/metabolismo , Infiltração de Neutrófilos , Espécies Reativas de Oxigênio/metabolismoRESUMO
Autophagy is originally described as the main catabolic pathway responsible for maintaining intracellular nutritional homeostasis that involves the formation of a unique vacuole, the autophagosome, and the interaction with the endosome-lysosome pathways. This conserved machinery plays a key role in immune-protection against different invaders, including pathogenic bacteria, intracellular parasites, and some viruses like herpes simplex and hepatitis C virus. Importantly, autophagy is linked to a number of human diseases and disorders including neurodegenerative disease, Crohn's disease, type II diabetes, tumorigenesis, cardiomyopathy, and fatty liver disease. On the other hand, inflammasomes are multiprotein platforms stimulated upon several environmental conditions and microbial infection. Once assembled, the inflammasomes mediate the maturation of pro-inflammatory cytokines and promote phagosome-lysosome fusion to sustain an innate immune response. The intersections between autophagy and inflammasome have been observed in various diseases and microbial infections. This review highlights the molecular aspects involved in autophagy and inflammasome interactions during different medical conditions and microbial infections.
Assuntos
Infecções/imunologia , Inflamassomos/metabolismo , Complexos Multiproteicos/metabolismo , Doenças Neurodegenerativas/imunologia , Fagossomos/metabolismo , Animais , Autofagia/imunologia , Humanos , Imunidade Inata , Inflamassomos/imunologia , Complexos Multiproteicos/imunologiaRESUMO
BACKGROUND: Marijuana consumption is on the rise in the US but the health benefits of cannabis smoking are controversial and the impact of cannabis components on lung homeostasis is not well-understood. Lung function requires a fine regulation of the ion channel CFTR, which is responsible for fluid homeostasis and mucocilliary clearance. The goal of this study was to assess the effect that exposure to Δ9-tetrahydrocannabinol (THC), the psychoactive substance present in marijuana, has on CFTR expression and function. METHODS: Cultures of human bronchial epithelial cell line 16HBE14o- and primary human airway epithelial cells were exposed to THC. The expression of CFTR protein was determined by immunoblotting and CFTR function was measured using Ussing chambers. We also used specific pharmacological inhibitors of EGFR and ERK to determine the role of this pathway in THC-induced regulation of CFTR. RESULTS: THC decreased CFTR protein expression in primary human bronchial epithelial cells. This decrease was associated with reduced CFTR-mediated short-circuit currents. THC also induced activation of the ERK MAPK pathway via activation of EGFR. Inhibition of EGFR or MEK/ERK prevented THC-induced down regulation of CFTR protein expression. CONCLUSIONS AND GENERAL SIGNIFICANCE: THC negatively regulates CFTR and this is mediated through the EGFR/ERK axis. This study provides the first evidence that THC present in marijuana reduces the expression and function of CFTR in airway epithelial cells.
Assuntos
Brônquios/patologia , Regulador de Condutância Transmembrana em Fibrose Cística/metabolismo , Dronabinol/farmacologia , Células Epiteliais/patologia , Regulação da Expressão Gênica/efeitos dos fármacos , Alucinógenos/farmacologia , Brônquios/efeitos dos fármacos , Brônquios/metabolismo , Células Cultivadas , Regulador de Condutância Transmembrana em Fibrose Cística/genética , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/metabolismo , Receptores ErbB/metabolismo , Humanos , Sistema de Sinalização das MAP Quinases/efeitos dos fármacosRESUMO
As the eighth leading cause of annual mortality in the USA, influenza A viruses are a major public health concern. In 20% of patients, severe influenza progresses to acute lung injury (ALI). However, pathophysiological mechanisms underlying ALI development are poorly defined. We reported that, unlike wild-type (WT) C57BL/6 controls, influenza A virus-infected mice that are heterozygous for the F508del mutation in the cystic fibrosis transmembrane conductance regulator (HETs) did not develop ALI. This effect was associated with higher IL-6 and alveolar macrophages (AMs) at 6 days postinfection (d.p.i.) in HET bronchoalveolar lavage fluid (BALF). In the present study, we found that HET AMs were an important source of IL-6 at 6 d.p.i. Infection also induced TGF-ß production by HET but not WT mice at 2 d.p.i. TGF-ß neutralization at 2 d.p.i. (TGF-N) significantly reduced BALF IL-6 in HETs at 6 d.p.i. Neither TGF-N nor IL-6 neutralization at 4 d.p.i. (IL-6-N) altered postinfection weight loss or viral replication in either mouse strain. However, both treatments increased influenza A virus-induced hypoxemia, pulmonary edema, and lung dysfunction in HETs to WT levels at 6 d.p.i. TGF-N and IL-6-N did not affect BALF AM and neutrophil numbers but attenuated the CXCL-1/keratinocyte chemokine response in both strains and reduced IFN-γ production in WT mice. Finally, bone marrow transfer experiments showed that HET stromal and myeloid cells are both required for protection from ALI in HETs. These findings indicate that TGF-ß-dependent production of IL-6 by AMs later in infection prevents ALI development in influenza A virus-infected HET mice.
Assuntos
Lesão Pulmonar Aguda/virologia , Vírus da Influenza A/imunologia , Interleucina-6/fisiologia , Infecções por Orthomyxoviridae/imunologia , Fator de Crescimento Transformador beta/fisiologia , Lesão Pulmonar Aguda/imunologia , Animais , Líquido da Lavagem Broncoalveolar , Regulador de Condutância Transmembrana em Fibrose Cística/genética , Imunidade Inata , Macrófagos Alveolares/metabolismo , Macrófagos Alveolares/virologia , Camundongos da Linhagem 129 , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos CFTR , Deleção de SequênciaRESUMO
Cystic fibrosis is the most common inherited lethal disease in Caucasians. It is caused by mutations in the cystic fibrosis transmembrane conductance regulator (CFTR), of which the cftr ΔF508 mutation is the most common. ΔF508 macrophages are intrinsically defective in autophagy because of the sequestration of essential autophagy molecules within unprocessed CFTR aggregates. Defective autophagy allows Burkholderia cenocepacia (B. cepacia) to survive and replicate in ΔF508 macrophages. Infection by B. cepacia poses a great risk to cystic fibrosis patients because it causes accelerated lung inflammation and, in some cases, a lethal necrotizing pneumonia. Autophagy is a cell survival mechanism whereby an autophagosome engulfs non-functional organelles and delivers them to the lysosome for degradation. The ubiquitin binding adaptor protein SQSTM1/p62 is required for the delivery of several ubiquitinated cargos to the autophagosome. In WT macrophages, p62 depletion and overexpression lead to increased and decreased bacterial intracellular survival, respectively. In contrast, depletion of p62 in ΔF508 macrophages results in decreased bacterial survival, whereas overexpression of p62 leads to increased B. cepacia intracellular growth. Interestingly, the depletion of p62 from ΔF508 macrophages results in the release of the autophagy molecule beclin1 (BECN1) from the mutant CFTR aggregates and allows its redistribution and recruitment to the B. cepacia vacuole, mediating the acquisition of the autophagy marker LC3 and bacterial clearance via autophagy. These data demonstrate that p62 differentially dictates the fate of B. cepacia infection in WT and ΔF508 macrophages.
Assuntos
Proteínas Adaptadoras de Transdução de Sinal/genética , Autofagia/genética , Infecções por Burkholderia/genética , Regulador de Condutância Transmembrana em Fibrose Cística/genética , Fibrose Cística/genética , Proteínas de Choque Térmico/genética , Macrófagos/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/antagonistas & inibidores , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Animais , Biomarcadores/metabolismo , Infecções por Burkholderia/complicações , Infecções por Burkholderia/metabolismo , Infecções por Burkholderia/microbiologia , Burkholderia cenocepacia/fisiologia , Fibrose Cística/complicações , Fibrose Cística/metabolismo , Fibrose Cística/microbiologia , Regulador de Condutância Transmembrana em Fibrose Cística/metabolismo , Expressão Gênica , Proteínas de Choque Térmico/antagonistas & inibidores , Proteínas de Choque Térmico/metabolismo , Humanos , Macrófagos/microbiologia , Macrófagos/patologia , Camundongos , Camundongos Transgênicos , Viabilidade Microbiana , Proteínas Associadas aos Microtúbulos/metabolismo , Fagossomos/metabolismo , Transporte Proteico , RNA Interferente Pequeno/genética , Proteína Sequestossoma-1 , Transfecção , Ubiquitina/genética , Ubiquitina/metabolismoRESUMO
Legionella pneumophila (L. pneumophila) is an intracellular bacterium of human alveolar macrophages that causes Legionnaires' disease. In contrast to humans, most inbred mouse strains are restrictive to L. pneumophila replication. We demonstrate that autophagy targets L. pneumophila vacuoles to lysosomes and that this process requires ubiquitination of L. pneumophila vacuoles and the subsequent binding of the autophagic adaptor p62/SQSTM1 to ubiquitinated vacuoles. The L. pneumophila legA9 encodes for an ankyrin-containing protein with unknown role. We show that the legA9 mutant replicate in WT mice and their bone marrow-derived macrophages. This is the first L. pneumophila mutant to be found to replicate in WT bone marrow-derived macrophages other than the Fla mutant. Less legA9 mutant-containing vacuoles acquired ubiquitin labeling and p62/SQSTM1 staining, evading autophagy uptake and avoiding lysosomal fusion. Thus, we describe a bacterial protein that targets the L. pneumophila-containing vacuole for autophagy uptake.
Assuntos
Autofagia/imunologia , Proteínas de Bactérias/genética , Legionella pneumophila/genética , Macrófagos/microbiologia , Mutação , Vacúolos/imunologia , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/imunologia , Animais , Proteínas de Bactérias/imunologia , Células Cultivadas , Proteínas de Choque Térmico/genética , Proteínas de Choque Térmico/imunologia , Especificidade de Hospedeiro , Interações Hospedeiro-Patógeno , Humanos , Evasão da Resposta Imune/genética , Legionella pneumophila/imunologia , Lisossomos/imunologia , Lisossomos/metabolismo , Lisossomos/microbiologia , Macrófagos/imunologia , Camundongos , Fagossomos/imunologia , Fagossomos/metabolismo , Fagossomos/microbiologia , Ligação Proteica , Proteína Sequestossoma-1 , Ubiquitina/metabolismo , Ubiquitinação , Vacúolos/metabolismo , Vacúolos/microbiologiaRESUMO
Burkholderia cenocepacia is an opportunistic pathogen that causes chronic infection and induces progressive respiratory inflammation in cystic fibrosis patients. Recognition of bacteria by mononuclear cells generally results in the activation of caspase-1 and processing of IL-1ß, a major proinflammatory cytokine. In this study, we report that human pyrin is required to detect intracellular B. cenocepacia leading to IL-1ß processing and release. This inflammatory response involves the host adapter molecule ASC and the bacterial type VI secretion system (T6SS). Human monocytes and THP-1 cells stably expressing either small interfering RNA against pyrin or YFP-pyrin and ASC (YFP-ASC) were infected with B. cenocepacia and analyzed for inflammasome activation. B. cenocepacia efficiently activates the inflammasome and IL-1ß release in monocytes and THP-1. Suppression of pyrin levels in monocytes and THP-1 cells reduced caspase-1 activation and IL-1ß release in response to B. cenocepacia challenge. In contrast, overexpression of pyrin or ASC induced a robust IL-1ß response to B. cenocepacia, which correlated with enhanced host cell death. Inflammasome activation was significantly reduced in cells infected with T6SS-defective mutants of B. cenocepacia, suggesting that the inflammatory reaction is likely induced by an as yet uncharacterized effector(s) of the T6SS. Together, we show for the first time, to our knowledge, that in human mononuclear cells infected with B. cenocepacia, pyrin associates with caspase-1 and ASC forming an inflammasome that upregulates mononuclear cell IL-1ß processing and release.
Assuntos
Sistemas de Secreção Bacterianos/fisiologia , Burkholderia cenocepacia/imunologia , Proteínas do Citoesqueleto/fisiologia , Inflamassomos/fisiologia , Monócitos/microbiologia , Apoptose , Sistemas de Secreção Bacterianos/genética , Burkholderia cenocepacia/genética , Proteínas Adaptadoras de Sinalização CARD , Caspase 1/fisiologia , Linhagem Celular/microbiologia , Proteínas do Citoesqueleto/antagonistas & inibidores , Proteínas do Citoesqueleto/genética , Humanos , Interleucina-1beta/metabolismo , Monócitos/metabolismo , Fagocitose , Pirina , Interferência de RNA , RNA Interferente Pequeno/farmacologia , Proteínas Recombinantes de Fusão/fisiologiaRESUMO
Pseudomonas aeruginosa (P. aeruginosa) is an opportunistic pathogen that can cause serious infections in immunocompromised patients. Quorum sensing (QS), a communication system evolved by P. aeruginosa to survey its density, is well acknowledged to be involved in various activities during bacterial infection. Recent studies have revealed the link between P. aeruginosa QS and host innate immune response. Previous evidence suggests that programmed cell death exists in response to P. aeruginosa infection. However, it remains unclear whether QS plays a role in the host programmed cell death process during the infection. In this study, we found that the deficiency of one of QS subsystems, rhl, markedly increased mouse bone marrow macrophage cell death induced by P. aeruginosa, which was accompanied by elevated phosphorylation of RIPK3 and MLKL. This highly increased necroptosis activation was caused by the upregulation of another QS subsystem, pqs, because the deletion of pqs in rhl-deficient P. aeruginosa abolished macrophage necroptosis in vitro and in vivo. In sum, our data highlight the cross-talk between P. aeruginosa QS and host necroptosis, which is executed through the rhl-pqs axis.