Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
1.
New Phytol ; 233(1): 251-264, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34643285

RESUMO

Arabidopsis thaliana seed germination is marked by extensive translational control at two critical phase transitions. The first transition refers to the start of hydration, the hydration translational shift. The second shift, the germination translational shift (GTS) is the phase between testa rupture and radicle protrusion at which the seed makes the all or nothing decision to germinate. The mechanism behind the translational regulation at these phase transitions is unknown. RNA binding proteins (RBPs) are versatile players in the post-transcriptional control of messenger RNAs (mRNAs) and as such candidates for regulating translation during seed germination. Here, we report the mRNA binding protein repertoire of seeds during the GTS. Thirty seed specific RBPs and 22 dynamic RBPs were identified during the GTS, like the putative RBP Vacuolar ATPase subunit A and RBP HSP101. Several stress granule markers were identified in this study, which suggests that seeds are prepared to quickly adapt the translation of specific mRNAs in response to changes in environmental conditions during the GTS. Taken together this study provides a detailed insight into the world of RBPs during seed germination and their possible regulatory role during this developmentally regulated process.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Regulação da Expressão Gênica de Plantas , Germinação , Proteoma , RNA Mensageiro/genética , Sementes/genética , Grânulos de Estresse
2.
Anal Bioanal Chem ; 412(6): 1277-1289, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31927602

RESUMO

High-molecular-weight glutenin subunits (HMW-GS) play an important role for the baking quality of wheat. The ancient wheats emmer and spelt differ in their HMW-GS pattern compared to modern common wheat and this might be one reason for their comparatively poor baking quality. The aim of this study was to elucidate similarities and differences in the amino acid sequences of two 1Bx HMW-GS of common wheat, spelt and emmer. First, the sodium dodecyl polyacrylamide gel electrophoresis (SDS-PAGE) system was optimized to separate common wheat, spelt and emmer Bx6 and Bx7 from other HMW-GS (e.g., 1Ax and 1By) in high concentrations. The in-gel digests of the Bx6 and Bx7 bands were analyzed by untargeted LC-MS/MS experiments revealing different UniProtKB accessions in spelt and emmer compared to common wheat. The HMW-GS Bx6 and Bx7, respectively, of emmer and spelt showed differences in the amino acid sequences compared to those of common wheat. The identities of the peptide variations were confirmed by targeted LC-MS/MS. These peptides can be used to differentiate between Bx6 and Bx7 of spelt and emmer and Bx6 and Bx7 of common wheat. The findings should help to increase the reliability and curation status of wheat protein databases and to understand the effects of protein structure on the functional properties. Graphical abstract.


Assuntos
Sequência de Aminoácidos , Eletroforese em Gel de Poliacrilamida/métodos , Glutens/química , Espectrometria de Massas em Tandem/métodos , Triticum/química , Bases de Dados de Proteínas , Glutens/isolamento & purificação , Peso Molecular , Homologia de Sequência de Aminoácidos , Triticum/classificação
3.
Proc Natl Acad Sci U S A ; 110(24): 10010-5, 2013 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-23716655

RESUMO

The plant immune system is activated by microbial patterns that are detected as nonself molecules. Such patterns are recognized by immune receptors that are cytoplasmic or localized at the plasma membrane. Cell surface receptors are represented by receptor-like kinases (RLKs) that frequently contain extracellular leucine-rich repeats and an intracellular kinase domain for activation of downstream signaling, as well as receptor-like proteins (RLPs) that lack this signaling domain. It is therefore hypothesized that RLKs are required for RLPs to activate downstream signaling. The RLPs Cf-4 and Ve1 of tomato (Solanum lycopersicum) mediate resistance to the fungal pathogens Cladosporium fulvum and Verticillium dahliae, respectively. Despite their importance, the mechanism by which these immune receptors mediate downstream signaling upon recognition of their matching ligand, Avr4 and Ave1, remained enigmatic. Here we show that the tomato ortholog of the Arabidopsis thaliana RLK Suppressor Of BIR1-1/Evershed (SOBIR1/EVR) and its close homolog S. lycopersicum (Sl)SOBIR1-like interact in planta with both Cf-4 and Ve1 and are required for the Cf-4- and Ve1-mediated hypersensitive response and immunity. Tomato SOBIR1/EVR interacts with most of the tested RLPs, but not with the RLKs FLS2, SERK1, SERK3a, BAK1, and CLV1. SOBIR1/EVR is required for stability of the Cf-4 and Ve1 receptors, supporting our observation that these RLPs are present in a complex with SOBIR1/EVR in planta. We show that SOBIR1/EVR is essential for RLP-mediated immunity and propose that the protein functions as a regulatory RLK of this type of cell-surface receptors.


Assuntos
Proteínas de Arabidopsis/metabolismo , Hidrolases de Éster Carboxílico/metabolismo , Glicoproteínas de Membrana/metabolismo , Proteínas de Plantas/metabolismo , Receptores de Superfície Celular/metabolismo , Sequência de Aminoácidos , Arabidopsis/genética , Arabidopsis/metabolismo , Arabidopsis/microbiologia , Proteínas de Arabidopsis/genética , Hidrolases de Éster Carboxílico/genética , Cladosporium/fisiologia , Regulação da Expressão Gênica de Plantas , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Interações Hospedeiro-Patógeno , Immunoblotting , Solanum lycopersicum/genética , Solanum lycopersicum/metabolismo , Solanum lycopersicum/microbiologia , Glicoproteínas de Membrana/genética , Microscopia Confocal , Dados de Sequência Molecular , Doenças das Plantas/genética , Doenças das Plantas/microbiologia , Proteínas de Plantas/genética , Plantas Geneticamente Modificadas , Ligação Proteica , Interferência de RNA , Receptores de Superfície Celular/genética , Verticillium/fisiologia
4.
Mol Plant Microbe Interact ; 28(9): 1032-48, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26011556

RESUMO

L-type lectin receptor kinases (LecRK) are potential immune receptors. Here, we characterized two closely-related Arabidopsis LecRK, LecRK-IX.1 and LecRK-IX.2, of which T-DNA insertion mutants showed compromised resistance to Phytophthora brassicae and Phytophthora capsici, with double mutants showing additive susceptibility. Overexpression of LecRK-IX.1 or LecRK-IX.2 in Arabidopsis and transient expression in Nicotiana benthamiana increased Phytophthora resistance but also induced cell death. Phytophthora resistance required both the lectin domain and kinase activity, but for cell death, the lectin domain was not needed. Silencing of the two closely related mitogen-activated protein kinase genes NbSIPK and NbNTF4 in N. benthamiana completely abolished LecRK-IX.1-induced cell death but not Phytophthora resistance. Liquid chromatography-mass spectrometry analysis of protein complexes coimmunoprecipitated in planta with LecRK-IX.1 or LecRK-IX.2 as bait, resulted in the identification of the N. benthamiana ABC transporter NbPDR1 as a potential interactor of both LecRK. The closest homolog of NbPDR1 in Arabidopsis is ABCG40, and coimmunoprecipitation experiments showed that ABCG40 associates with LecRK-IX.1 and LecRK-IX.2 in planta. Similar to the LecRK mutants, ABCG40 mutants showed compromised Phytophthora resistance. This study shows that LecRK-IX.1 and LecRK-IX.2 are Phytophthora resistance components that function independent of each other and independent of the cell-death phenotype. They both interact with the same ABC transporter, suggesting that they exploit similar signal transduction pathways.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/enzimologia , Morte Celular/fisiologia , Phytophthora/fisiologia , Doenças das Plantas/microbiologia , Proteínas Quinases/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas Quinases/genética , Proteínas Serina-Treonina Quinases/genética
5.
Fungal Genet Biol ; 79: 42-53, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-26092789

RESUMO

Zymoseptoria tritici is an economically important pathogen of wheat. However, the molecular basis of pathogenicity on wheat is still poorly understood. Here, we present a global survey of the proteins secreted by this fungus in the apoplast of resistant (cv. Shafir) and susceptible (cv. Obelisk) wheat cultivars after inoculation with reference Z. tritici strain IPO323. The fungal proteins present in apoplastic fluids were analyzed by gel electrophoresis and by data-independent acquisition liquid chromatography/mass spectrometry (LC/MS(E)) combined with data-dependent acquisition LC-MS/MS. Subsequent mapping mass spectrometry-derived peptide sequence data against the genome sequence of strain IPO323 identified 665 peptides in the MS(E) and 93 in the LC-MS/MS mode that matched to 85 proteins. The identified fungal proteins, including cell-wall degrading enzymes and proteases, might function in pathogenicity, but the functions of many remain unknown. Most fungal proteins accumulated in cv. Obelisk at the onset of necrotrophy. This inventory provides an excellent basis for future detailed studies on the role of these genes and their encoded proteins during pathogenesis in wheat.


Assuntos
Ascomicetos/química , Proteínas Fúngicas/análise , Doenças das Plantas/microbiologia , Proteoma/análise , Triticum/microbiologia , Ascomicetos/isolamento & purificação , Cromatografia Líquida , Eletroforese , Espectrometria de Massas , Espectrometria de Massas em Tandem
6.
Fungal Genet Biol ; 79: 54-62, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-26092790

RESUMO

Culture filtrates (CFs) of the fungal wheat pathogen Zymoseptoria tritici were assayed for necrosis-inducing activity after infiltration in leaves of various wheat cultivars. Active fractions were partially purified and characterized. The necrosis-inducing factors in CFs are proteinaceous, heat stable and their necrosis-inducing activity is temperature and light dependent. The in planta activity of CFs was tested by a time series of proteinase K (PK) co-infiltrations, which was unable to affect activity 30min after CF infiltrations. This suggests that the necrosis inducing proteins (NIPs) are either absent from the apoplast and likely actively transported into mesophyll cells or protected from the protease by association with a receptor. Alternatively, plant cell death signaling pathways might be fully engaged during the first 30min and cannot be reversed even after PK treatment. Further fractionation of the CFs with the highest necrosis-inducing activity involved fast performance liquid chromatography, SDS-PAGE and mass spectrometry. This revealed that most of the proteins present in the fractions have not been described before. The two most prominent ZtNIP encoding candidates were heterologously expressed in Pichia pastoris and subsequent infiltration assays showed their differential activity in a range of wheat cultivars.


Assuntos
Ascomicetos/química , Proteínas Fúngicas/análise , Necrose/microbiologia , Doenças das Plantas/microbiologia , Triticum/microbiologia , Fatores de Virulência/análise , Cromatografia Líquida , Eletroforese em Gel de Poliacrilamida , Proteínas Fúngicas/química , Luz , Espectrometria de Massas , Estabilidade Proteica , Temperatura , Fatores de Virulência/química
7.
Proc Natl Acad Sci U S A ; 109(25): 10119-24, 2012 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-22675118

RESUMO

Plants lack the seemingly unlimited receptor diversity of a somatic adaptive immune system as found in vertebrates and rely on only a relatively small set of innate immune receptors to resist a myriad of pathogens. Here, we show that disease-resistant tomato plants use an efficient mechanism to leverage the limited nonself recognition capacity of their innate immune system. We found that the extracellular plant immune receptor protein Cf-2 of the red currant tomato (Solanum pimpinellifolium) has acquired dual resistance specificity by sensing perturbations in a common virulence target of two independently evolved effectors of a fungus and a nematode. The Cf-2 protein, originally identified as a monospecific immune receptor for the leaf mold fungus Cladosporium fulvum, also mediates disease resistance to the root parasitic nematode Globodera rostochiensis pathotype Ro1-Mierenbos. The Cf-2-mediated dual resistance is triggered by effector-induced perturbations of the apoplastic Rcr3(pim) protein of S. pimpinellifolium. Binding of the venom allergen-like effector protein Gr-VAP1 of G. rostochiensis to Rcr3(pim) perturbs the active site of this papain-like cysteine protease. In the absence of the Cf-2 receptor, Rcr3(pim) increases the susceptibility of tomato plants to G. rostochiensis, thus showing its role as a virulence target of these nematodes. Furthermore, both nematode infection and transient expression of Gr-VAP1 in tomato plants harboring Cf-2 and Rcr3(pim) trigger a defense-related programmed cell death in plant cells. Our data demonstrate that monitoring host proteins targeted by multiple pathogens broadens the spectrum of disease resistances mediated by single plant immune receptors.


Assuntos
Cladosporium/patogenicidade , Nematoides/patogenicidade , Doenças das Plantas/imunologia , Receptores Imunológicos/fisiologia , Solanum lycopersicum/imunologia , Animais , Dados de Sequência Molecular , Virulência
8.
J Proteome Res ; 13(7): 3191-9, 2014 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-24815921

RESUMO

Determining the list of proteins present in a sample, based on the list of identified peptides, is a crucial step in the untargeted proteomics LC-MS/MS data-processing pipeline. This step, commonly referred to as protein inference, turns out to be a very challenging problem because many peptide sequences are found across multiple proteins. Current protein inference engines typically use peptide to spectrum match (PSM) quality measures and spectral count information to score protein identifications in LC-MS/MS data sets. This is, however, not enough to confidently validate or otherwise rule out many of the proteins. Here we introduce the basis for a new way of performing protein inference based on accurate quantification patterns of identified peptides using the correlation of these patterns to validate peptide to protein matches. For the first implementation of this new approach, we focused on (1) distinguishing between unambiguously and ambiguously identified proteins and (2) generating hypotheses for the discrimination of subsets of the ambiguously identified proteins. Our preprocessing pipelines support both labeled LC-MS/MS or label-free LC-MS followed by LC-MS/MS providing the peptide quantification. We apply our procedure to two published data sets and show that it is able to detect and infer proteins that would otherwise not be confidently inferred.


Assuntos
Mapeamento de Peptídeos/métodos , Software , Sequência de Aminoácidos , Humanos , Dados de Sequência Molecular , Proteômica , Espectrometria de Massas em Tandem
9.
Sci Adv ; 10(16): eadl3419, 2024 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-38640242

RESUMO

Plant biomass conversion by saprotrophic fungi plays a pivotal role in terrestrial carbon (C) cycling. The general consensus is that fungi metabolize carbohydrates, while lignin is only degraded and mineralized to CO2. Recent research, however, demonstrated fungal conversion of 13C-monoaromatic compounds into proteinogenic amino acids. To unambiguously prove that polymeric lignin is not merely degraded, but also metabolized, carefully isolated 13C-labeled lignin served as substrate for Agaricus bisporus, the world's most consumed mushroom. The fungus formed a dense mycelial network, secreted lignin-active enzymes, depolymerized, and removed lignin. With a lignin carbon use efficiency of 0.14 (g/g) and fungal biomass enrichment in 13C, we demonstrate that A. bisporus assimilated and further metabolized lignin when offered as C-source. Amino acids were high in 13C-enrichment, while fungal-derived carbohydrates, fatty acids, and ergosterol showed traces of 13C. These results hint at lignin conversion via aromatic ring-cleaved intermediates to central metabolites, underlining lignin's metabolic value for fungi.


Assuntos
Agaricus , Carbono , Lignina , Lignina/metabolismo , Carbono/metabolismo , Micélio/metabolismo , Carboidratos , Aminoácidos
10.
Plant Physiol ; 159(4): 1819-33, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22649272

RESUMO

Cf proteins are receptor-like proteins (RLPs) that mediate resistance of tomato (Solanum lycopersicum) to the foliar pathogen Cladosporium fulvum. These transmembrane immune receptors, which carry extracellular leucine-rich repeats that are subjected to posttranslational glycosylation, perceive effectors of the pathogen and trigger a defense response that results in plant resistance. To identify proteins required for the functionality of these RLPs, we performed immunopurification of a functional Cf-4-enhanced green fluorescent protein fusion protein transiently expressed in Nicotiana benthamiana, followed by mass spectrometry. The endoplasmic reticulum (ER) heat shock protein70 binding proteins (BiPs) and lectin-type calreticulins (CRTs), which are chaperones involved in ER-quality control, were copurifying with Cf-4-enhanced green fluorescent protein. The tomato and N. benthamiana genomes encode four BiP homologs and silencing experiments revealed that these BiPs are important for overall plant viability. For the three tomato CRTs, virus-induced gene silencing targeting the plant-specific CRT3a gene resulted in a significantly compromised Cf-4-mediated defense response and loss of full resistance to C. fulvum. We show that upon knockdown of CRT3a the Cf-4 protein accumulated, but the pool of Cf-4 protein carrying complex-type N-linked glycans was largely reduced. Together, our study on proteins required for Cf function reveals an important role for the CRT ER chaperone CRT3a in the biogenesis and functionality of this type of RLP involved in plant defense.


Assuntos
Resistência à Doença , Retículo Endoplasmático/metabolismo , Chaperonas Moleculares/metabolismo , Doenças das Plantas/microbiologia , Proteínas de Plantas/biossíntese , Solanum lycopersicum/metabolismo , Solanum lycopersicum/microbiologia , Sequência de Aminoácidos , Cladosporium/fisiologia , Inativação Gênica , Glicosilação , Proteínas de Fluorescência Verde/isolamento & purificação , Dados de Sequência Molecular , Folhas de Planta/metabolismo , Proteínas de Plantas/química , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas , Polissacarídeos/metabolismo , Ligação Proteica , Proteínas Recombinantes de Fusão/isolamento & purificação , Proteínas Recombinantes de Fusão/metabolismo , Homologia de Sequência de Aminoácidos , Nicotiana/genética , Transformação Genética
11.
Front Allergy ; 4: 1228353, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38075395

RESUMO

Amylase trypsin inhibitors (ATIs) play an important role in wheat allergies and potentially in non-coeliac wheat sensitivity. Food processing could be important to mitigate the pathogenic properties of ATIs, e.g., by denaturation, glycation, enzymatic hydrolysis, cross-linking, and oxidation and reduction. These modifications also impact the solubility and extractability. The complex solubility behaviour of ATI isoforms (water and salt soluble, but also chloroform-methanol soluble, solubility depending on the redox state) becomes even more complex upon processing due to denaturation and (bio)chemical modifications. This significantly hinders the feasibility of quantitative extraction. Moreover, changes in biofunctionality may occur during the process of extraction, and the changes in ATI due to food processing will be more difficult to assess. Heat treatment decreases the extractability of ATIs with water, NaCl, and other buffer extracts, and binding of IgE from wheat-allergic persons to ATIs as observed with Western blotting is decreased or absent. IgE binding is reduced with the total extract in chaotropic and reducing agents. However, it can be increased when the proteins are hydrolyzed by proteases. Fermentation involving certain species of Fructolactobacilli (FLB), followed by baking, decreases the amount of ATIs and IgE binding to ATIs. In yeast-fermented bread, the amount of ATIs decreased in a similar manner, but IgE binding was more prominent, indicating that there was a modification of ATIs that affected the epitope recognition. When isolated ATIs are ingested with high ATI degrading FLB, the immune response in mice is less elevated in vivo, when compared with ATI without high ATI degrading FLB. The pathogenic effects on the skin of dogs and one wheat-allergic child are also decreased when soluble proteins or isolated ATIs are reduced with the thioredoxin/thioredoxin reductase NADPH system. Glycation on the other hand has been shown to potentiate the allergenic properties of ATIs as evidenced by the large increase in IgE binding. The impact of food processing on the pathogenic properties of ATIs is hardly studied in vivo in humans. There seem to be opportunities to mitigate the pathogenic properties in vitro, but potentiation of pathogenic properties is also frequently observed. This requires a deeper understanding on the impact of food processing on the pathogenicity of ATIs.

12.
iScience ; 26(7): 107087, 2023 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-37426348

RESUMO

Despite substantial lignocellulose conversion during mycelial growth, previous transcriptome and proteome studies have not yet revealed how secretomes from the edible mushroom Agaricus bisporus develop and whether they modify lignin models in vitro. To clarify these aspects, A. bisporus secretomes collected throughout a 15-day industrial substrate production and from axenic lab-cultures were subjected to proteomics, and tested on polysaccharides and lignin models. Secretomes (day 6-15) comprised A. bisporus endo-acting and substituent-removing glycoside hydrolases, whereas ß-xylosidase and glucosidase activities gradually decreased. Laccases appeared from day 6 onwards. From day 10 onwards, many oxidoreductases were found, with numerous multicopper oxidases (MCO), aryl alcohol oxidases (AAO), glyoxal oxidases (GLOX), a manganese peroxidase (MnP), and unspecific peroxygenases (UPO). Secretomes modified dimeric lignin models, thereby catalyzing syringylglycerol-ß-guaiacyl ether (SBG) cleavage, guaiacylglycerol-ß-guaiacyl ether (GBG) polymerization, and non-phenolic veratrylglycerol-ß-guaiacyl ether (VBG) oxidation. We explored A. bisporus secretomes and insights obtained can help to better understand biomass valorization.

13.
Food Chem ; 423: 136312, 2023 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-37182491

RESUMO

Three genotypes each of bread wheat, durum wheat and tritordeum were grown in randomized replicated field trials in Andalusia (Spain) for two years and wholemeal flours analysed for a range of components to identify differences in composition. The contents of all components that were determined varied widely between grain samples of the individual species and in most cases also overlapped between the three species. Nevertheless, statistically significant differences between the compositions of the three species were observed. Notably, tritordeum had significantly higher contents of protein, some minerals (magnesium and iron), total phenolics and methyl donors. Tritordeum also had higher levels of total amino acids (but not asparagine) and total sugars, including raffinose. By contrast, bread wheat and tritordeum had similar contents of the two major dietary fibre components in white flour, arabinoxylan and ß-glucan, with significantly lower contents in durum wheat.


Assuntos
Pão , Triticum , Triticum/química , Pão/análise , Poaceae/química , Grão Comestível/química , Farinha/análise
14.
Foods ; 12(4)2023 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-36832918

RESUMO

Five cultivars of bread wheat and spelt and three of emmer were grown in replicate randomised field trials on two sites for two years with 100 and 200 kg nitrogen fertiliser per hectare, reflecting low input and intensive farming systems. Wholemeal flours were analysed for components that are suggested to contribute to a healthy diet. The ranges of all components overlapped between the three cereal types, reflecting the effects of both genotype and environment. Nevertheless, statistically significant differences in the contents of some components were observed. Notably, emmer and spelt had higher contents of protein, iron, zinc, magnesium, choline and glycine betaine, but also of asparagine (the precursor of acrylamide) and raffinose. By contrast, bread wheat had higher contents of the two major types of fibre, arabinoxylan (AX) and ß-glucan, than emmer and a higher AX content than spelt. Although such differences in composition may be suggested to result in effects on metabolic parameters and health when studied in isolation, the final effects will depend on the quantity consumed and the composition of the overall diet.

15.
Proteomics ; 12(7): 1024-38, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22522809

RESUMO

Cytosolic ribosomes are among the largest multisubunit cellular complexes. Arabidopsis thaliana ribosomes consist of 79 different ribosomal proteins (r-proteins) that each are encoded by two to six (paralogous) genes. It is unknown whether the paralogs are incorporated into the ribosome and whether the relative incorporation of r-protein paralogs varies in response to environmental cues. Immunopurified ribosomes were isolated from A. thaliana rosette leaves fed with sucrose. Trypsin digested samples were analyzed by qTOF-LC-MS using both MS(E) and classical MS/MS. Peptide features obtained by using these two methods were identified using MASCOT and Proteinlynx Global Server searching the theoretical sequences of A. thaliana proteins. The A. thaliana genome encodes 237 r-proteins and 69% of these were identified with proteotypic peptides for most of the identified proteins. These r-proteins were identified with average protein sequence coverage of 32% observed by MS(E) . Interestingly, the analysis shows that the abundance of r-protein paralogs in the ribosome changes in response to sucrose feeding. This is particularly evident for paralogous RPS3aA, RPS5A, RPL8B, and RACK1 proteins. These results show that protein synthesis in the A. thaliana cytosol involves a heterogeneous ribosomal population. The implications of these findings in the regulation of translation are discussed.


Assuntos
Proteínas de Arabidopsis/análise , Arabidopsis/metabolismo , Proteoma/análise , Proteoma/metabolismo , Proteínas Ribossômicas/análise , Sacarose/farmacologia , Sequência de Aminoácidos , Arabidopsis/química , Proteínas de Arabidopsis/metabolismo , Dados de Sequência Molecular , Fragmentos de Peptídeos/análise , Fragmentos de Peptídeos/metabolismo , Análise de Componente Principal , Proteômica , RNA de Plantas/química , Proteínas Ribossômicas/metabolismo , Ribossomos/química , Sacarose/metabolismo , Espectrometria de Massas em Tandem
16.
ACS Chem Biol ; 17(8): 2054-2064, 2022 08 19.
Artigo em Inglês | MEDLINE | ID: mdl-35867905

RESUMO

We studied the mechanistic and biological origins of anti-inflammatory poly-unsaturated fatty acid-derived N-acylethanolamines using synthetic bifunctional chemical probes of docosahexaenoyl ethanolamide (DHEA) and arachidonoyl ethanolamide (AEA) in RAW264.7 macrophages stimulated with 1.0 µg mL-1 lipopolysaccharide. Using a photoreactive diazirine, probes were covalently attached to their target proteins, which were further studied by introducing a fluorescent probe or biotin-based affinity purification. Fluorescence confocal microscopy showed DHEA and AEA probes localized in cytosol, specifically in structures that point toward the endoplasmic reticulum and in membrane vesicles. Affinity purification followed by proteomic analysis revealed peroxiredoxin-1 (Prdx1) as the most significant binding interactor of both DHEA and AEA probes. In addition, Prdx4, endosomal related proteins, small GTPase signaling proteins, and prostaglandin synthase 2 (Ptgs2, also known as cyclooxygenase 2 or COX-2) were identified. Lastly, confocal fluorescence microscopy revealed the colocalization of Ptgs2 and Rac1 with DHEA and AEA probes. These data identified new molecular targets suggesting that DHEA and AEA may be involved in reactive oxidation species regulation, cell migration, cytoskeletal remodeling, and endosomal trafficking and support endocytosis as an uptake mechanism.


Assuntos
Lipopolissacarídeos , Proteínas Monoméricas de Ligação ao GTP , Animais , Ciclo-Oxigenase 2/metabolismo , Desidroepiandrosterona/metabolismo , Lipopolissacarídeos/metabolismo , Lipopolissacarídeos/farmacologia , Macrófagos/metabolismo , Camundongos , Proteínas Monoméricas de Ligação ao GTP/metabolismo , Peroxirredoxinas , Proteômica , Células RAW 264.7
17.
Food Chem ; 374: 131710, 2022 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-34891089

RESUMO

Wholemeal flours from blends of bread wheat, emmer and spelt were processed into bread using yeast-based and sourdough fermentation. The bread wheat flour contained significantly higher concentrations of total dietary fibre and fructans than the spelt and emmer flours, the latter having the lowest contents. Breadmaking using sourdough and yeast systems resulted in changes in composition from flour to dough to bread including increases in organic acids and mannitol in the sourdough system and increases in amino acids and sugars (released by hydrolysis of proteins and starch, respectively) in both processing systems. The concentrations of fructans and raffinose (the major endogenous FODMAPs) were reduced by yeast and sourdough fermentation, with yeast having the greater effect. Both systems resulted in greater increases in sugars and glycerol in emmer than in bread wheat and spelt, but the significance of these differences for human health has not been established.


Assuntos
Pão , Triticum , Fibras na Dieta , Fermentação , Farinha , Humanos , Saccharomyces cerevisiae
18.
Front Plant Sci ; 12: 735719, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34603360

RESUMO

Over the past decade, ample transcriptome data have been generated at different stages during seed germination; however, far less is known about protein synthesis during this important physiological process. Generally, the correlation between transcript levels and protein abundance is low, which strongly limits the use of transcriptome data to accurately estimate protein expression. Polysomal profiling has emerged as a tool to identify mRNAs that are actively translated. The association of the mRNA to the polysome, also referred to as translatome, provides a proxy for mRNA translation. In this study, the correlation between the changes in total mRNA, polysome-associated mRNA, and protein levels across seed germination was investigated. The direct correlation between polysomal mRNA and protein abundance at a single time-point during seed germination is low. However, once the polysomal mRNA of a time-point is compared to the proteome of the next time-point, the correlation is much higher. 35% of the investigated proteome has delayed changes at the protein level. Genes have been classified based on their delayed protein changes, and specific motifs in these genes have been identified. Moreover, mRNA and protein stability and mRNA length have been found as important predictors for changes in protein abundance. In conclusion, polysome association and/or dissociation predicts future changes in protein abundance in germinating seeds.

19.
Front Nutr ; 8: 667370, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34124122

RESUMO

Amylase/trypsin-inhibitors (ATIs) comprise about 2-4% of the total wheat grain proteins and may contribute to natural defense against pests and pathogens. However, they are currently among the most widely studied wheat components because of their proposed role in adverse reactions to wheat consumption in humans. ATIs have long been known to contribute to IgE-mediated allergy (notably Bakers' asthma), but interest has increased since 2012 when they were shown to be able to trigger the innate immune system, with attention focused on their role in coeliac disease which affects about 1% of the population and, more recently, in non-coeliac wheat sensitivity which may affect up to 10% of the population. This has led to studies of their structure, inhibitory properties, genetics, control of expression, behavior during processing, effects on human adverse reactions to wheat and, most recently, strategies to modify their expression in the plant using gene editing. We therefore present an integrated account of this range of research, identifying inconsistencies, and gaps in our knowledge and identifying future research needs. Note  This paper is the outcome of an invited international ATI expert meeting held in Amsterdam, February 3-5 2020.

20.
Protein Sci ; 29(7): 1581-1595, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32219913

RESUMO

Proteins from cashew nut can elicit mild to severe allergic reactions. Three allergenic proteins have already been identified, and it is expected that additional allergens are present in cashew nut. pathogenesis-related protein 10 (PR10) allergens from pollen have been found to elicit similar allergic reactions as those from nuts and seeds. Therefore, we investigated the presence of PR10 genes in cashew nut. Using RNA-seq analysis, we were able to identify several PR10-like transcripts in cashew nut and clone six putative PR10 genes. In addition, PR10 protein expression in raw cashew nuts was confirmed by immunoblotting and liquid chromatography-mass spectrometry (LC-MS/MS) analyses. An in silico allergenicity assessment suggested that all identified cashew PR10 proteins are potentially allergenic and may represent three different isoallergens.


Assuntos
Alérgenos , Anacardium , Simulação por Computador , Nozes , Proteínas de Plantas , RNA-Seq , Alérgenos/biossíntese , Alérgenos/química , Alérgenos/genética , Anacardium/química , Anacardium/genética , Anacardium/metabolismo , Cromatografia Líquida , Nozes/química , Nozes/genética , Nozes/metabolismo , Proteínas de Plantas/biossíntese , Proteínas de Plantas/química , Proteínas de Plantas/genética , Espectrometria de Massas em Tandem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA