Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
1.
Front Neurosci ; 18: 1406814, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38962177

RESUMO

Introduction: Decoding an individual's hidden brain states in responses to musical stimuli under various cognitive loads can unleash the potential of developing a non-invasive closed-loop brain-machine interface (CLBMI). To perform a pilot study and investigate the brain response in the context of CLBMI, we collect multimodal physiological signals and behavioral data within the working memory experiment in the presence of personalized musical stimuli. Methods: Participants perform a working memory experiment called the n-back task in the presence of calming music and exciting music. Utilizing the skin conductance signal and behavioral data, we decode the brain's cognitive arousal and performance states, respectively. We determine the association of oxygenated hemoglobin (HbO) data with performance state. Furthermore, we evaluate the total hemoglobin (HbT) signal energy over each music session. Results: A relatively low arousal variation was observed with respect to task difficulty, while the arousal baseline changes considerably with respect to the type of music. Overall, the performance index is enhanced within the exciting session. The highest positive correlation between the HbO concentration and performance was observed within the higher cognitive loads (3-back task) for all of the participants. Also, the HbT signal energy peak occurs within the exciting session. Discussion: Findings may underline the potential of using music as an intervention to regulate the brain cognitive states. Additionally, the experiment provides a diverse array of data encompassing multiple physiological signals that can be used in the brain state decoder paradigm to shed light on the human-in-the-loop experiments and understand the network-level mechanisms of auditory stimulation.

2.
IEEE Open J Eng Med Biol ; 4: 234-250, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38196978

RESUMO

Goal: Inferring autonomous nervous system (ANS) activity is a challenging issue and has critical applications in stress regulation. Sweat secretions caused by ANS activity influence the electrical conductance of the skin. Therefore, the variations in skin conductance (SC) measurements reflect the sudomotor nerve activity (SMNA) and can be used to infer the underlying ANS activity. These variations are strongly correlated with emotional arousal as well as thermoregulation. However, accurately recovering ANS activity and the corresponding state-space system from a single channel signal is difficult due to artifacts introduced by measurement noise. To minimize the impact of noise on inferring ANS activity, we utilize multiple channels of SC data. Methods: We model skin conductance using a second-order differential equation incorporating a time-shifted sparse impulse train input in combination with independent cubic basis spline functions. Finally, we develop a block coordinate descent method for SC signal decomposition by employing a generalized cross-validation sparse recovery approach while including physiological priors. Results: We analyze the experimental data to validate the performance of the proposed algorithm. We demonstrate its capacity to recover the ANS activations, the underlying physiological system parameters, and both tonic and phasic components. Finally, we present an overview of the algorithm's comparative performance under varying conditions and configurations to substantiate its ability to accurately model ANS activity. Our results show that our algorithm performs better in terms of multiple metrics like noise performance, AUC score, the goodness of fit of reconstructed signal, and lower missing impulses compared with the single channel decomposition approach. Conclusion: In this study, we highlight the challenges and benefits of concurrent decomposition and deconvolution of multichannel SC signals.

3.
Sci Rep ; 13(1): 12399, 2023 08 08.
Artigo em Inglês | MEDLINE | ID: mdl-37553409

RESUMO

Inspired by advances in wearable technologies, we design and perform human-subject experiments. We aim to investigate the effects of applying safe actuation (i.e., auditory, gustatory, and olfactory) for the purpose of regulating cognitive arousal and enhancing the performance states. In two proposed experiments, subjects are asked to perform a working memory experiment called n-back tasks. Next, we incorporate listening to different types of music, drinking coffee, and smelling perfume as safe actuators. We employ signal processing methods to seamlessly infer participants' brain cognitive states. The results demonstrate the effectiveness of the proposed safe actuation in regulating the arousal state and enhancing performance levels. Employing only wearable devices for human monitoring and using safe actuation intervention are the key components of the proposed experiments. Our dataset fills the existing gap of the lack of publicly available datasets for the self-management of internal brain states using wearable devices and safe everyday actuators. This dataset enables further machine learning and system identification investigations to facilitate future smart work environments. This would lead us to the ultimate idea of developing practical automated personalized closed-loop architectures for managing internal brain states and enhancing the quality of life.


Assuntos
Estimulação Acústica , Encéfalo , Cognição , Memória de Curto Prazo , Olfato , Paladar , Dispositivos Eletrônicos Vestíveis , Feminino , Humanos , Masculino , Nível de Alerta/fisiologia , Encéfalo/fisiologia , Café , Cognição/fisiologia , Conjuntos de Dados como Assunto , Memória de Curto Prazo/fisiologia , Música , Perfumes , Projetos Piloto , Qualidade de Vida , Olfato/fisiologia , Paladar/fisiologia , Adulto , Eletroencefalografia
4.
IEEE/ACM Trans Comput Biol Bioinform ; 19(4): 2463-2470, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34110999

RESUMO

Growth hormone (GH) is secreted by cells in the anterior pituitary on two time scales: discrete pulses over minutes that occur within a 24-hr pattern. Secretion reflects the balance of stimulatory and inhibitory inputs from the hypothalamus and is influenced by gonadal steroids, stress, nutrition, and sleep/wake states. We propose a novel approach for the analysis of GH data and use this approach to quantify (i) the timing, amplitude and the number of GH pulses and (ii) GH infusion, clearance and basal secretion (i.e., time invariant) rates, using serum GH sampled every 10 minutes during an 8-hour sleep study in 18 adolescents. In our method, we approximate hormonal secretory events by deconvolving GH data via a two-step coordinate descent approach. The first step utilizes a sparse-recovery approach to estimate the timing and amplitude of GH secretory events. The second step estimates physiological parameters. Our method identifies the timing and amplitude of GH pulses and system parameters from experimental and simulated data, with a median R2 of 0.93, among experimental data. Recovering GH pulses and model parameters using this approach may improve the quantification of GH parameters under different physiological and pathological conditions and the design and monitoring of interventions.


Assuntos
Hormônio do Crescimento Humano , Adolescente , Hormônio do Crescimento , Humanos
5.
Front Endocrinol (Lausanne) ; 13: 769951, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35480480

RESUMO

The prevalence of obesity is increasing around the world at an alarming rate. The interplay of the hormone leptin with the hypothalamus-pituitary-adrenal axis plays an important role in regulating energy balance, thereby contributing to obesity. This study presents a mathematical model, which describes hormonal behavior leading to an energy abnormal equilibrium that contributes to obesity. To this end, we analyze the behavior of two neuroendocrine hormones, leptin and cortisol, in a cohort of women with obesity, with simplified minimal state-space modeling. Using a system theoretic approach, coordinate descent method, and sparse recovery, we deconvolved the serum leptin-cortisol levels. Accordingly, we estimate the secretion patterns, timings, amplitudes, number of underlying pulses, infusion, and clearance rates of hormones in eighteen premenopausal women with obesity. Our results show that minimal state-space model was able to successfully capture the leptin and cortisol sparse dynamics with the multiple correlation coefficients greater than 0.83 and 0.87, respectively. Furthermore, the Granger causality test demonstrated a negative prospective predictive relationship between leptin and cortisol, 14 of 18 women. These results indicate that increases in cortisol are prospectively associated with reductions in leptin and vice versa, suggesting a bidirectional negative inhibitory relationship. As dysregulation of leptin may result in an abnormality in satiety and thereby associated to obesity, the investigation of leptin-cortisol sparse dynamics may offer a better diagnostic methodology to improve better treatments plans for individuals with obesity.


Assuntos
Hidrocortisona , Leptina , Feminino , Humanos , Obesidade , Sistema Hipófise-Suprarrenal , Estudos Prospectivos
7.
J Endocr Soc ; 6(11): bvac146, 2022 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-37283961

RESUMO

Context: In children, growth hormone (GH) pulses occur after sleep onset in association with slow-wave sleep (SWS). There have been no studies in children to quantify the effect of disrupted sleep on GH secretion. Objective: This study aimed to investigate the effect of acute sleep disruption on GH secretion in pubertal children. Methods: Fourteen healthy individuals (aged 11.3-14.1 years) were randomly assigned to 2 overnight polysomnographic studies, 1 with and 1 without SWS disruption via auditory stimuli, with frequent blood sampling to measure GH. Results: Auditory stimuli delivered during the disrupted sleep night caused a 40.0 ± 7.8% decrease in SWS. On SWS-disrupted sleep nights, the rate of GH pulses during N2 sleep was significantly lower than during SWS (IRR = 0.56; 95% CI, 0.32-0.97). There were no differences in GH pulse rates during the various sleep stages or wakefulness in disrupted compared with undisrupted sleep nights. SWS disruption had no effect on GH pulse amplitude and frequency or basal GH secretion. Conclusion: In pubertal children, GH pulses were temporally associated with episodes of SWS. Acute disruption of sleep via auditory tones during SWS did not alter GH secretion. These results indicate that SWS may not be a direct stimulus of GH secretion.

8.
Annu Int Conf IEEE Eng Med Biol Soc ; 2021: 757-762, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34891401

RESUMO

Stress has effects on productivity and performance. Poor stress management may lead to reduced productivity and performance. Non-invasive actuators such as music have the potential to effectively regulate stress. In this study, using a state-space approach, we obtain a performance state to investigate the performance during a working memory task while playing two different types of music in the background. In our experiments, participants performed a working memory task while listening to calming and vexing music of their choice. We utilize the binary correct/incorrect response and the continuous reaction time of the response from the participants to quantify the performance. The state-space quantification reveals that vexing music has a statistically significant positive impact on the obtained performance state. This indicates the feasibility of designing non-invasive closed-loop systems to regulate stress for maximizing performance and productivity.


Assuntos
Música , Percepção Auditiva , Cognição , Humanos , Memória de Curto Prazo , Tempo de Reação
9.
Annu Int Conf IEEE Eng Med Biol Soc ; 2021: 6551-6557, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34892610

RESUMO

Enhancing the productivity of humans by regulating arousal during cognitive tasks is a challenging topic in psychology that has a great potential to transform workplaces for increased productivity and educational systems for enhanced performance. In this study, we assess the feasibility of using the Yerkes-Dodson law from psychology to improve performance during a working memory experiment. We employ a Bayesian filtering approach to track cognitive arousal and performance. In particular, by utilizing skin conductance signal recorded during a working memory experiment in the presence of music, we decode a cognitive arousal state. This is done by considering the rate of neural impulse occurrences and their amplitudes as observations for the arousal model. Similarly, we decode a performance state using the number of correct and incorrect responses, and the reaction time as binary and continuous behavioral observations, respectively. We estimate the arousal and performance states within an expectation-maximization framework. Thereafter, we design an arousal-performance model on the basis of the Yerkes-Dodson law and estimate the model parameters via regression analysis. In this experiment musical neurofeedback was used to modulate cognitive arousal. Our investigations indicate that music can be used as a mode of actuation to influence arousal and enhance the cognitive performance during working memory tasks. Our findings can have a significant impact on designing future smart workplaces and online educational systems.


Assuntos
Música , Neurorretroalimentação , Nível de Alerta , Teorema de Bayes , Cognição , Humanos
10.
IEEE Trans Biomed Eng ; 68(5): 1726-1736, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33119508

RESUMO

OBJECTIVE: Sweat secretions lead to variations in skin conductance (SC) signal. The relatively fast variation of SC, called the phasic component, reflects sympathetic nervous system activity. The slow variation related to thermoregulation and general arousal is known as the tonic component. It is challenging to decompose the SC signal into its constituents to decipher the encoded neural information related to emotional arousal. METHODS: We model the phasic component using a second-order differential equation representing the diffusion and evaporation processes of sweating. We include a sparse impulsive neural signal that stimulates the sweat glands for sweat production. We model the tonic component with several cubic B-spline functions. We formulate an optimization problem with physiological priors on system parameters, a sparsity prior on the neural stimuli, and a smoothness prior on the tonic component. Finally, we employ a generalized-cross-validation-based coordinate descent approach to balance among the smoothness of the tonic component, the sparsity of the neural stimuli, and the residual. RESULTS: We illustrate that we can successfully recover the unknowns separating both tonic and phasic components from both experimental and simulated data (with ). Further, we successfully demonstrate our ability to automatically identify the sparsity level for the neural stimuli and the smoothness level for the tonic component. CONCLUSION: Our generalized-cross-validation-based novel method for SC signal decomposition successfully addresses previous challenges and retrieves a physiologically plausible solution. SIGNIFICANCE: Accurate decomposition of SC could potentially improve cognitive stress tracking in patients with mental disorders.


Assuntos
Resposta Galvânica da Pele , Fenômenos Fisiológicos da Pele , Nível de Alerta , Humanos , Sudorese , Sistema Nervoso Simpático
11.
IEEE Open J Eng Med Biol ; 2: 84-90, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35402986

RESUMO

The control and manipulation of various types of end effectors such as powered exoskeletons, prostheses, and 'neural' cursors by brain-machine interface (BMI) systems has been the target of many research projects. A seamless "plug and play" interface between any BMI and end effector is desired, wherein similar user's intent cause similar end effectors to behave identically. This report is based on the outcomes of an IEEE Standards Association Industry Connections working group on End Effectors for Brain-Machine Interfacing that convened to identify and address gaps in the existing standards for BMI-based solutions with a focus on the end-effector component. A roadmap towards standardization of end effectors for BMI systems is discussed by identifying current device standards that are applicable for end effectors. While current standards address basic electrical and mechanical safety, and to some extent, performance requirements, several gaps exist pertaining to unified terminologies, data communication protocols, patient safety and risk mitigation.

12.
IEEE Trans Biomed Eng ; 67(11): 3163-3172, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32149617

RESUMO

OBJECTIVE: Fibromyalgia syndrome (FMS) and chronic fatigue syndrome (CFS) are complicated medical disorders, with little known etiologies. The purpose of this research is to characterize FMS and CFS by studying the variations in cortisol secretion patterns, timings, amplitudes, the number of underlying pulses, as well as infusion and clearance rates of cortisol. METHODS: Using a physiological state-space model with plausible constraints, we estimate the hormonal secretory events and the physiological system parameters (i.e., infusion and clearance rates). RESULTS: Our results show that the clearance rate of cortisol is lower in FMS patients as compared to their matched healthy individuals based on a simplified cortisol secretion model. Moreover, the number, magnitude, and energy of hormonal secretory events are lower in FMS patients. During early morning hours, the magnitude and energy of the hormonal secretory events are higher in CFS patients. CONCLUSION: Due to lower cortisol clearance rate, there is a higher accumulation of cortisol in FMS patients as compared to their matched healthy subjects. As the FMS patient accumulates higher cortisol residues, internal inhibitory feedback regulates the hormonal secretory events. Therefore, the FMS patients show a lower number, magnitude, and energy of hormonal secretory events. Though CFS patients have the same number of secretory events, they secrete lower quantities during early morning hours. When we compare the results for CFS patients against FMS patients, we observe different cortisol alteration patterns. SIGNIFICANCE: Characterizing CFS and FMS based on the cortisol alteration will help us to develop novel methods for treating these disorders.


Assuntos
Síndrome de Fadiga Crônica , Fibromialgia , Humanos , Hidrocortisona
13.
Annu Int Conf IEEE Eng Med Biol Soc ; 2020: 3170-3173, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-33018678

RESUMO

Olfactory perception is intrinsically tied to emotional processing, in both behavior and neurophysiology. Despite advances in olfactory-affective neuroscience, it is unclear how separate attributes of odor stimuli contribute to olfactoryinduced emotions, especially within the positive segment of the hedonic dimension to avoid potential cross-valence confounds. In this study, we examined how pleasantness and intensity of fragrances relate to different grades of positive affect. Our results show that greater odor pleasantness and intensity are independently associated with stronger positive affect. Pleasantness has a greater influence than intensity in evoking a positive vs. neutral affect, whereas intensity is more impactful than pleasantness in evoking an extreme positive vs. positive response. Autonomic response, as assessed by the galvanic skin response (GSR) was found to decrease with increasing pleasantness but not intensity. This clarifies how olfactory and affective processing induce significant downstream effects in peripheral physiology and self-reported affective experience, pertinent to the thriving field of olfactory neuromarkerting.


Assuntos
Expressão Facial , Odorantes , Percepção Olfatória , Emoções , Humanos , Olfato
14.
Annu Int Conf IEEE Eng Med Biol Soc ; 2019: 745-749, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31946004

RESUMO

Salty sweat secretions in the epidermis change the skin's electrical activity resulting in the measured skin conductance signal. While the relatively fast variation of skin conductance (i.e. phasic component) reflects sympathetic nervous system activity, the slow variation (i. e. tonic component) is related to thermoregulation and general arousal. To better understand the neural information encoded in a skin conductance signal, it is necessary to decompose it into its constituent components. We model the fast variations using a second order differential equation incorporating a sparse impulsive input to the model. Furthermore, we model the tonic component with several cubic basis spline functions. Finally, we develop a block coordinate descent approach for skin conductance signal decomposition by employing generalized-cross-validation for balancing between smoothness of the tonic component, the sparsity of the neural stimuli, and residual error. We analyze experimental and simulated data to validate the performance of the proposed approach. We successfully illustrate its ability to recover the neural stimuli, the underlying physiological system parameters, and both tonic and phasic components. In summary, we develop a novel approach for decomposition of phasic and tonic components of skin conductance signal using a generalized-cross-validation-based block coordinate descent approach. Recovering the underlying neural stimuli and the tonic component accurately could potentially improve cognitive-stress-related arousal states estimation for better stress regulation in mental health disorders.


Assuntos
Resposta Galvânica da Pele , Fenômenos Fisiológicos da Pele , Nível de Alerta , Sudorese , Sistema Nervoso Simpático
15.
IEEE Trans Biomed Eng ; 66(9): 2585-2595, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-30629490

RESUMO

OBJECTIVE: Electrodermal activity (EDA) indicates different eccrine sweat gland activity caused by the stimulation of the autonomic nervous system. Recovering the number, timings, and amplitudes of underlying neural stimuli and physiological system parameters from the EDA is a challenging problem. One of the challenges with the existing methods is the non-convexity of the optimization formulations for estimating the parameters given the stimuli. METHODS: We solve this parameter estimation problem using the following continuous-time system identification framework: 1) we specifically use the Hartley modulating function (HMF) for parameter estimation so that the optimization formulation for estimating the parameters given the stimuli is convex; and 2) we use Kaiser windows with different shape parameters to put more emphasis on the significant spectral components so that there is a balance between filtering out the noise and capturing the data. We apply this algorithm to skin conductance (SC) data, a measure of EDA, collected during cognitive stress experiments. RESULTS: Under a sparsity constraint, in the HMF domain, we successfully deconvolve the SC signal. We obtain number, timings, and amplitudes of the underlying neural stimuli along with the system parameters with R2 above 0.915. Moreover, using simulated data, we illustrate that our approach outperforms the existing EDA data analysis methods, in recovering underlying stimuli. CONCLUSION: We develop a novel approach for deconvolution of SC by employing the HMF method and capturing the significant spectral components of SC data. SIGNIFICANCE: Recovering the underlying neural stimuli more accurately using this approach will potentially improve tracking emotional states in affective computing.


Assuntos
Resposta Galvânica da Pele/fisiologia , Processamento de Sinais Assistido por Computador , Estimulação Acústica , Algoritmos , Feminino , Dedos/fisiologia , Humanos , Masculino , Análise e Desempenho de Tarefas
16.
Front Neurosci ; 13: 780, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31447627

RESUMO

Markers from local field potentials, neurochemicals, skin conductance, and hormone concentrations have been proposed as a means of closing the loop in Deep Brain Stimulation (DBS) therapy for treating neuropsychiatric and movement disorders. Developing a closed-loop DBS controller based on peripheral signals would require: (i) the recovery of a biomarker from the source neural stimuli underlying the peripheral signal variations; (ii) the estimation of an unobserved brain or central nervous system related state variable from the biomarker. The state variable is application-specific. It is emotion-related in the case of depression or post-traumatic stress disorder, and movement-related for Parkinson's or essential tremor. We present a method for closing the DBS loop in neuropsychiatric disorders based on the estimation of sympathetic arousal from skin conductance measurements. We deconvolve skin conductance via an optimization formulation utilizing sparse recovery and obtain neural impulses from sympathetic nerve fibers stimulating the sweat glands. We perform this deconvolution via a two-step coordinate descent procedure that recovers the sparse neural stimuli and estimates physiological system parameters simultaneously. We next relate an unobserved sympathetic arousal state to the probability that these neural impulses occur and use Bayesian filtering within an Expectation-Maximization framework for estimation. We evaluate our method on a publicly available data-set examining the effect of different types of stress on peripheral signal changes including body temperature, skin conductance and heart rate. A high degree of arousal is estimated during cognitive tasks, as are much lower levels during relaxation. The results demonstrate the ability to decode psychological arousal from neural activity underlying skin conductance signal variations. The complete pipeline from recovering neural stimuli to decoding an emotion-related brain state using skin conductance presents a promising methodology for the ultimate realization of a closed-loop DBS controller. Closed-loop DBS treatment would additionally help reduce unnecessary power consumption and improve therapeutic gains.

17.
Annu Int Conf IEEE Eng Med Biol Soc ; 2019: 6896-6901, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31947425

RESUMO

Fibromyalgia Syndrome (FMS) and Chronic Fatigue Syndrome (CFS) are complex medical conditions with similar symptoms such as anxiety, fatigue, depression, headaches, muscle aches and joint pain. The etiology of both these syndromes is unknown. The objective of this study is to characterize FMS, both in the presence and in the absence of CFS, by analyzing variations in cortisol secretion patterns, timings, amplitudes, and the number of the underlying pulses as well as infusion and clearance rates. The comparison is performed against matched healthy control subjects. We estimate the hormonal secretory events by deconvolving cortisol data using a two-step coordinate descent approach. The first step implements a sparse recovery approach to infer the amplitudes and the timings of the cortisol secretion events from limited cortisol hormone data. The main advantage of this method is estimating the cortisol secretory events using a system theoretic approach. The second step is to estimate the physiological system parameters (i.e. infusion and clearance rates). This approach has been verified on healthy individuals previously. Our results show that the clearance rate of cortisol by the liver is relatively lower in patients as compared to the matched healthy individuals. This suggests that there is a relatively higher accumulation of serum cortisol in patients when compared to matched healthy subjects.


Assuntos
Síndrome de Fadiga Crônica , Fibromialgia , Depressão , Humanos , Hidrocortisona
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA