RESUMO
PURPOSE: The terminology used for gene-disease curation and variant annotation to describe inheritance, allelic requirement, and both sequence and functional consequences of a variant is currently not standardized. There is considerable discrepancy in the literature and across clinical variant reporting in the derivation and application of terms. Here, we standardize the terminology for the characterization of disease-gene relationships to facilitate harmonized global curation and to support variant classification within the ACMG/AMP framework. METHODS: Terminology for inheritance, allelic requirement, and both structural and functional consequences of a variant used by Gene Curation Coalition members and partner organizations was collated and reviewed. Harmonized terminology with definitions and use examples was created, reviewed, and validated. RESULTS: We present a standardized terminology to describe gene-disease relationships, and to support variant annotation. We demonstrate application of the terminology for classification of variation in the ACMG SF 2.0 genes recommended for reporting of secondary findings. Consensus terms were agreed and formalized in both Sequence Ontology (SO) and Human Phenotype Ontology (HPO) ontologies. Gene Curation Coalition member groups intend to use or map to these terms in their respective resources. CONCLUSION: The terminology standardization presented here will improve harmonization, facilitate the pooling of curation datasets across international curation efforts and, in turn, improve consistency in variant classification and genetic test interpretation.
Assuntos
Testes Genéticos , Variação Genética , Humanos , Alelos , Bases de Dados GenéticasRESUMO
Major depressive disorder (MDD) and type 2 diabetes (T2D) are complex disorders whose comorbidity can be due to hypercortisolism and may be explained by dysfunction of the corticotropin-releasing hormone receptor 1 (CRHR1) and cortisol feedback within the hypothalamic-pituitary-adrenal axis (HPA axis). To investigate the role of the CRHR1 gene in familial T2D, MDD, and MDD-T2D comorbidity, we tested 152 CRHR1 single-nucleotide-polymorphisms (SNPs), via 2-point parametric linkage and linkage disequilibrium (LD; i.e., association) analyses using 4 models, in 212 peninsular families with T2D and MDD. We detected linkage/LD/association to/with MDD and T2D with 122 (116 novel) SNPs. MDD and T2D had 4 and 3 disorder-specific novel risk LD blocks, respectively, whose risk variants reciprocally confirm one another. Comorbidity was conferred by 3 novel independent SNPs. In silico analyses reported novel functional changes, including the binding site of glucocorticoid receptor-alpha [GR-α] on CRHR1 for transcription regulation. This is the first report of CRHR1 pleiotropic linkage/LD/association with peninsular familial MDD and T2D. CRHR1 contribution to MDD is stronger than to T2D and may antecede T2D onset. Our findings suggest a new molecular-based clinical entity of MDD-T2D and should be replicated in other ethnic groups.
RESUMO
The oxytocin system is well-known for its role in social bonding and reproduction. Recently, the oxytocin system was found to play other metabolic roles such as regulation of food intake, peripheral glucose uptake, and insulin sensitivity. Variants in OXTR gene have been associated with overeating, increased cardiovascular risk, and type 2 diabetes (T2D). We tested 20 microarray-derived single nucleotide polymorphisms in the OXTR gene in 212 Italian families with rich family history for T2D and found four novel and one previously reported variant suggestively significant for linkage and association with the risk of T2D. Our study has shed some light into the genetics of susceptibility to T2D at least in Italian families.
Assuntos
Diabetes Mellitus Tipo 2 , Receptores de Ocitocina , Humanos , Receptores de Ocitocina/genética , Receptores de Ocitocina/metabolismo , Ocitocina/metabolismo , Diabetes Mellitus Tipo 2/genética , Predisposição Genética para Doença , Polimorfismo de Nucleotídeo ÚnicoRESUMO
PURPOSE: Several groups and resources provide information that pertains to the validity of gene-disease relationships used in genomic medicine and research; however, universal standards and terminologies to define the evidence base for the role of a gene in disease and a single harmonized resource were lacking. To tackle this issue, the Gene Curation Coalition (GenCC) was formed. METHODS: The GenCC drafted harmonized definitions for differing levels of gene-disease validity on the basis of existing resources, and performed a modified Delphi survey with 3 rounds to narrow the list of terms. The GenCC also developed a unified database to display curated gene-disease validity assertions from its members. RESULTS: On the basis of 241 survey responses from the genetics community, a consensus term set was chosen for grading gene-disease validity and database submissions. As of December 2021, the database contained 15,241 gene-disease assertions on 4569 unique genes from 12 submitters. When comparing submissions to the database from distinct sources, conflicts in assertions of gene-disease validity ranged from 5.3% to 13.4%. CONCLUSION: Terminology standardization, sharing of gene-disease validity classifications, and resolution of curation conflicts will facilitate collaborations across international curation efforts and in turn, improve consistency in genetic testing and variant interpretation.
Assuntos
Bases de Dados Genéticas , Genômica , Testes Genéticos , Variação Genética , HumanosRESUMO
Mutations in MLC1 cause megalencephalic leukoencephalopathy with subcortical cysts (MLC), a rare form of leukodystrophy characterized by macrocephaly, epilepsy, spasticity, and slow mental deterioration. Genetic studies of MLC are lacking from many parts of the world, especially in Sub-Saharan Africa. Genomic DNA was extracted for 67 leukodystrophic patients from 43 Sudanese families. Mutations were screened using the NGS panel testing 139 leukodystrophies and leukoencephalopathies causing genes (NextSeq500 Illumina). Five homozygous MLC1 variants were discovered in seven patients from five distinct families, including three consanguineous families from the same region of Sudan. Three variants were missense (c.971 T > G, p.Ile324Ser; c.344 T > C, p.Phe115Ser; and c.881 C > T, p.Pro294Leu), one duplication (c.831_838dupATATCTGT, p.Ser280Tyrfs*8), and one synonymous/splicing-site mutation (c.762 C > T, p.Ser254). The segregation pattern was consistent with autosomal recessive inheritance. The clinical presentation and brain MRI of the seven affected patients were consistent with the diagnosis of MLC1. Due to the high frequency of distinct MLC1 mutations found in our leukodystrophic Sudanese families, we analyzed the coding sequence of MLC1 gene in 124 individuals from the Sudanese genome project in comparison with the 1000-genome project. We found that Sudan has the highest proportion of deleterious variants in MLC1 gene compared with other populations from the 1000-genome project.
Assuntos
Cistos , Doenças Desmielinizantes Hereditárias do Sistema Nervoso Central , Megalencefalia , Cistos/diagnóstico , Cistos/genética , Doenças Desmielinizantes Hereditárias do Sistema Nervoso Central/diagnóstico por imagem , Doenças Desmielinizantes Hereditárias do Sistema Nervoso Central/genética , Humanos , Proteínas de Membrana/genética , MutaçãoRESUMO
The melanocortin receptors are G-protein-coupled receptors, which are essential components of the hypothalamic-pituitary-adrenal axis, and they mediate the actions of melanocortins (melanocyte-stimulating hormones: α-MSH, ß-MSH, and γ-MSH) as well as the adrenocorticotropin hormone (ACTH) in skin pigmentation, adrenal steroidogenesis, and stress response. Three melanocortin receptor genes (MC1R, MC2R, and MC5R) contribute to the risk of major depressive disorder (MDD), and one melanocortin receptor gene (MC4R) contributes to the risk of type 2 diabetes (T2D). MDD increases T2D risk in drug-naïve patients; thus, MDD and T2D commonly coexist. The five melanocortin receptor genes might confer risk for both disorders. However, they have never been investigated jointly to evaluate their potential contributing roles in the MDD-T2D comorbidity, specifically within families. In 212 Italian families with T2D and MDD, we tested 11 single nucleotide polymorphisms (SNPs) in the MC1R gene, 9 SNPs in MC2R, 3 SNPs in MC3R, 4 SNPs in MC4R, and 2 SNPs in MC5R. The testing used 2-point parametric linkage and linkage disequilibrium (LD) (i.e., association) analysis with four models (dominant with complete penetrance (D1), dominant with incomplete penetrance (D2), recessive with complete penetrance (R1), and recessive with incomplete penetrance (R2)). We detected significant (p ≤ 0.05) linkage and/or LD (i.e., association) to/with MDD for one SNP in MC2R (rs111734014) and one SNP in MC5R (rs2236700), and to/with T2D for three SNPs in MC1R (rs1805007 and rs201192930, and rs2228479), one SNP in MC2R (rs104894660), two SNPs in MC3R (rs3746619 and rs3827103), and one SNP in MC4R genes (Chr18-60372302). The linkage/LD/association was significant across different linkage patterns and different modes of inheritance. All reported variants are novel in MDD and T2D. This is the first study to report risk variants in MC1R, MC2R, and MC3R genes in T2D. MC2R and MC5R genes are replicated in MDD, with one novel variant each. Within our dataset, only the MC2R gene appears to confer risk for both MDD and T2D, albeit with different risk variants. To further clarity the role of the melanocortin receptor genes in MDD-T2D, these findings should be sought among other ethnicities as well.
Assuntos
Transtorno Depressivo Maior , Diabetes Mellitus Tipo 2 , Comorbidade , Depressão , Diabetes Mellitus Tipo 2/genética , Humanos , Sistema Hipotálamo-Hipofisário/metabolismo , Melanocortinas/genética , Melanocortinas/metabolismo , Sistema Hipófise-Suprarrenal/metabolismo , Receptores de Melanocortina/genética , Receptores de Melanocortina/metabolismoRESUMO
Impairment in the hypothalamic-pituitary-adrenal (HPA) axis and cortisol pathway may be major contributing factors to the common pathogenesis of major depressive disorders (MDD) and type 2 diabetes (T2D). A significant player in the neuroendocrine HPA axis and cortisol response is the glucocorticoid receptor (GR), which is encoded by the nuclear receptor subfamily 3 group C member (NR3C1) gene. Variants in the NR3C1 gene have been reported in patients with MDD and obesity and found to confer reduced risk for quantitative metabolic traits and T2D in Cushing syndrome; variants have not been reported in T2D and MDD-T2D comorbid patients. We studied 212 original Italian families with a rich family history for T2D and tested 24 single nucleotide polymorphisms (SNPs) in the NR3C1 gene for linkage to and linkage disequilibrium (LD) with T2D and MDD across different inheritance models. We identified a total of 6 novel SNPs significantly linked/in LD to/with T2D (rs6196, rs10482633, rs13186836, rs13184611, rs10482681 and rs258751) and 1 SNP (rs10482668) significantly linked to/in LD with both T2D and MDD. These findings expand understanding of the role that NR3C1 variants play in modulating the risk of T2D-MDD comorbidity. Replication and functional studies are needed to confirm these findings.
Assuntos
Transtorno Depressivo Maior , Diabetes Mellitus Tipo 2 , Receptores de Glucocorticoides , Comorbidade , Depressão , Transtorno Depressivo Maior/epidemiologia , Transtorno Depressivo Maior/genética , Diabetes Mellitus Tipo 2/complicações , Diabetes Mellitus Tipo 2/genética , Humanos , Hidrocortisona , Sistema Hipotálamo-Hipofisário/metabolismo , Sistema Hipófise-Suprarrenal/metabolismo , Receptores de Glucocorticoides/genéticaRESUMO
The corticotropin-releasing hormone receptor 2 (CRHR2) gene encodes CRHR2, contributing to the hypothalamic-pituitary-adrenal stress response and to hyperglycemia and insulin resistance. CRHR2-/- mice are hypersensitive to stress, and the CRHR2 locus has been linked to type 2 diabetes and depression. While CRHR2 variants confer risk for mood disorders, MDD, and type 2 diabetes, they have not been investigated in familial T2D and MDD. In 212 Italian families with type 2 diabetes and depression, we tested 17 CRHR2 single nucleotide polymorphisms (SNPs), using two-point parametric-linkage and linkage-disequilibrium (i.e., association) analysis (models: dominant-complete-penetrance-D1, dominant-incomplete-penetrance-D2, recessive-complete-penetrance-R1, recessive-incomplete-penetrance-R2). We detected novel linkage/linkage-disequilibrium/association to/with depression (3 SNPs/D1, 2 SNPs/D2, 3 SNPs/R1, 3 SNPs/R2) and type 2 diabetes (3 SNPs/D1, 2 SNPs/D2, 2 SNPs/R1, 1 SNP/R2). All detected risk variants are novel. Two depression-risk variants within one linkage-disequilibrium block replicate each other. Two independent novel SNPs were comorbid while the most significant conferred either depression- or type 2 diabetes-risk. Although the families were primarily ascertained for type 2 diabetes, depression-risk variants showed higher significance than type 2 diabetes-risk variants, implying CRHR2 has a stronger role in depression-risk than type 2 diabetes-risk. In silico analysis predicted variants' dysfunction. CRHR2 is for the first time linked to/in linkage-disequilibrium/association with depression-type 2 diabetes comorbidity and may underlie the shared genetic pathogenesis via pleiotropy.
Assuntos
Depressão/genética , Diabetes Mellitus Tipo 2 , Receptores de Hormônio Liberador da Corticotropina/genética , Animais , Comorbidade , Diabetes Mellitus Tipo 2/genética , Predisposição Genética para Doença , Desequilíbrio de Ligação , Camundongos , Polimorfismo de Nucleotídeo ÚnicoRESUMO
BACKGROUND: The conventional variant calling of pathogenic alleles in exome and genome sequencing requires the presence of the non-pathogenic alleles as genome references. This hinders the correct identification of variants with minor and/or pathogenic reference alleles warranting additional approaches for variant calling. RESULTS: More than 26,000 Exome Aggregation Consortium (ExAC) variants have a minor reference allele including variants with known ClinVar disease alleles. For instance, in a number of variants related to clotting disorders, the phenotype-associated allele is a human genome reference allele (rs6025, rs6003, rs1799983, and rs2227564 using the assembly hg19). We highlighted how the current variant calling standards miss homozygous reference disease variants in these sites and provided a bioinformatic panel that can be used to screen these variants using commonly available variant callers. We present exome sequencing results from an individual with venous thrombosis to emphasize how pathogenic alleles in clinically relevant variants escape variant calling while non-pathogenic alleles are detected. CONCLUSIONS: This article highlights the importance of specialized variant calling strategies in clinical variants with minor reference alleles especially in the context of personal genomes and exomes. We provide here a simple strategy to screen potential disease-causing variants when present in homozygous reference state.
Assuntos
Alelos , Sequenciamento do Exoma , Variação Genética , Frequência do Gene , Genoma Humano , Humanos , Padrões de Referência , Trombose Venosa/genética , Sequenciamento do Exoma/normasRESUMO
BACKGROUND: Infantile neuroaxonal dystrophy (INAD) is a rare hereditary neurological disorder caused by mutations in PLA2G6. The disease commonly affects children below 3 years of age and presents with delay in motor skills, optic atrophy and progressive spastic tetraparesis. Studies of INAD in Africa are extremely rare, and genetic studies from Sub Saharan Africa are almost non-existent. CASE PRESENTATION: Two Sudanese siblings presented, at ages 18 and 24 months, with regression in both motor milestones and speech development and hyper-reflexia. Brain MRI showed bilateral and symmetrical T2/FLAIR hyperintense signal changes in periventricular areas and basal ganglia and mild cerebellar atrophy. Whole exome sequencing with confirmatory Sanger sequencing were performed for the two patients and healthy family members. A novel variant (NM_003560.2 c.1427 + 2 T > C) acting on a splice donor site and predicted to lead to skipping of exon 10 was found in PLA2G6. It was found in a homozygous state in the two patients and homozygous reference or heterozygous in five healthy family members. CONCLUSION: This variant has one very strong (loss of function mutation) and three supporting evidences for its pathogenicity (segregation with the disease, multiple computational evidence and specific patients' phenotype). Therefore this variant can be currently annotated as "pathogenic". This is the first study to report mutations in PLA2G6 gene in patients from Sudan.
Assuntos
Sequenciamento do Exoma/métodos , Fosfolipases A2 do Grupo VI/genética , Mutação , Distrofias Neuroaxonais/genética , Sítios de Splice de RNA , Pré-Escolar , Feminino , Estudos de Associação Genética , Predisposição Genética para Doença , Homozigoto , Humanos , Lactente , Masculino , Irmãos , SudãoRESUMO
BACKGROUND: Leukoencephalopathy with brainstem and spinal cord involvement and lactate elevation (LBSL, OMIM #611105) is a genetic disease of the central nervous system characterized by lower limb spasticity, cerebellar ataxia and involvement of the dorsal column. The disease is caused by mutations in the DARS2 gene but has never been reported in sub-Saharan Africa so far. CASE PRESENTATION: Two siblings, aged 18 years and 15 years, from a consanguineous family presented with pyramidal signs and symptoms since infancy and developmental delay. Whole exome sequencing of the proband identified two compound heterozygous variants (NM_018122.4:c.1762C > G and c.563G > A) in DARS2. Sanger sequencing confirmed the presence of the mutations and their segregation in trans in both patients and in their elder sister (aged 20 years), who showed only brisk reflexes and mild lower limb spasticity. Surprisingly, in contrast to her subtle clinical presentation, the elder sister had abnormal MRI features and serum lactate levels comparable to her ill sisters. CONCLUSION: This report illustrates intra-familial phenotypic variation in LBSL and provides an example of a marked dissociation between the clinical and radiological phenotypes of the disease. This may have implications for the detection of mutation carriers in LBSL.
Assuntos
Aspartato-tRNA Ligase/genética , Leucoencefalopatias/genética , Adolescente , Feminino , Humanos , Mutação , Linhagem , Fenótipo , Irmãos , Sudão , Adulto JovemRESUMO
BACKGROUND: Mitochondrial maternally inherited hearing impairment (HI) appears to be increasing in frequency. The incidence of mitochondrial defects causing HI is estimated to be between 6 and 33% of all hearing deficiencies. Mitochondrial m.1555A > G mutation is the first mtDNA mutation associated with non-syndromic sensorineural deafness and also with aminoglycoside induced HI. Its prevalence varied geographically between different populations. METHODS: We carried out PCR, restriction enzyme based screening, and sequencing of 337 subjects (including 132 patients diagnosed clinically with hereditary deafness) from 54 families from Syria for m.1555A > G mitochondrial mutation. RESULTS: Mitochondrial m.1555A > G mutation was detected in one of fifty-four families (1.85%), six out of the 132 (4.5%) of all patients with NSHI and one propositus of the 205 individuals with normal hearing (0.48%). CONCLUSION: This is the first study to report prelingual deafness causative gene mutations identified by sequencing technology in Syrian families. It is obvious from the results that the testing for the m.1555A > G mutation is useful for diagnosis of hearing loss in Syrian patients and should also be considered prior to treatment with aminoglycosides in predisposed individuals.
RESUMO
Heterozygous PRRT2 variants are frequently implicated in Self-limited Infantile Epilepsy, whereas homozygous variants are so far linked to severe presentations including developmental and epileptic encephalopathy, movement disorders, and intellectual disability. In a study aiming to explore the genetics of epilepsy in the Sudanese population, we investigated several families including a consanguineous family with three siblings diagnosed with self-limited infantile epilepsy. We evaluated both dominant and recessive inheritance using whole exome sequencing and genomic arrays. We identified a pathogenic homozygous splice-site variant in the first intron of PRRT2 [NC_000016.10(NM_145239.3):c.-65-1G > A] that segregated with the phenotype in this family. This work taps into the genetics of epilepsy in an underrepresented African population and suggests that the phenotypes of homozygous PRRT2 variants may include milder epilepsy presentations without movement disorders.
Assuntos
Proteínas de Membrana , Proteínas do Tecido Nervoso , Linhagem , Humanos , Proteínas do Tecido Nervoso/genética , Feminino , Masculino , Proteínas de Membrana/genética , Homozigoto , Lactente , Alelos , Fenótipo , Epilepsia/genética , Mutação , Criança , Pré-EscolarRESUMO
The prolactin receptor gene (PRLR) may contribute to polycystic ovarian syndrome (PCOS) since it plays important roles in physiological ovarian functions. PRLR-knockout mice have irregular cycles and subfertility and variants in or around the PRLR gene were associated in humans with female testosterone levels and recurrent miscarriage. We tested 40 variants in the PRLR gene in 212 Italian families phenotyped by type 2 diabetes (T2D) and PCOS and found two intronic PRLR-variants (rs13436213 and rs1604428) significantly linked to and/or associated with the risk of PCOS. This is the first study to report PRLR as a novel risk gene in PCOS. Functional studies are needed to confirm these results.
Assuntos
Diabetes Mellitus Tipo 2 , Hiperandrogenismo , Infertilidade , Síndrome do Ovário Policístico , Humanos , Feminino , Animais , Camundongos , Síndrome do Ovário Policístico/complicações , Receptores da Prolactina/genética , Prolactina/genética , Diabetes Mellitus Tipo 2/complicaçõesRESUMO
Polycystic ovarian syndrome (PCOS) is a disorder with a foundation of neuroendocrine dysfunction, characterized by increased gonadotropin-releasing hormone (GnRH) pulsatility, which is antagonized by dopamine. The dopamine receptor 2 (DRD2), encoded by the DRD2 gene, has been shown to mediate dopamine's inhibition of GnRH neuron excitability through pre- and post-synaptic interactions in murine models. Further, DRD2 is known to mediate prolactin (PRL) inhibition by dopamine, and high blood level of PRL have been found in more than one third of women with PCOS. We recently identified PRL as a gene contributing to PCOS risk and reported DRD2 conferring risk for type 2 diabetes and depression, which can both coexist with PCOS. Given DRD2 mediating dopamine's action on neuroendocrine profiles and association with metabolic-mental states related to PCOS, polymorphisms in DRD2 may predispose to development of PCOS. Therefore, we aimed to investigate whether DRD2 variants are in linkage to and/or linkage disequilibrium (i.e., linkage and association) with PCOS in Italian families. In 212 Italian families, we tested 22 variants within the DRD2 gene for linkage and linkage disequilibrium with PCOS. We identified five novel variants significantly linked to the risk of PCOS. This is the first study to identify DRD2 as a risk gene in PCOS, however, functional studies are needed to confirm these results.
Assuntos
Diabetes Mellitus Tipo 2 , Síndrome do Ovário Policístico , Receptores de Dopamina D2 , Feminino , Humanos , Dopamina/fisiologia , Hormônio Liberador de Gonadotropina , Síndrome do Ovário Policístico/genética , Receptores de Dopamina D2/genéticaRESUMO
BACKGROUND: Women with polycystic ovarian syndrome (PCOS) have increased hypothalamic-pituitary-adrenal (HPA) axis activation, pro-inflammatory mediators, and psychological distress in response to stressors. In women with PCOS, the corticotropin-releasing hormone (CRH) induces an exaggerated HPA response, possibly mediated by one of the CRH receptors (CRHR1 or CRHR2). Both CRHR1 and CRHR2 are implicated in insulin secretion, and variants in CRHR1 and CRHR2 genes may predispose to the mental-metabolic risk for PCOS. METHODS: We phenotyped 212 Italian families with type 2 diabetes (T2D) for PCOS following the Rotterdam diagnostic criteria. We analyzed within CRHR1 and CRHR2 genes, respectively, 36 and 18 microarray-variants for parametric linkage to and/or linkage disequilibrium (LD) with PCOS under the recessive with complete penetrance (R1) and dominant with complete penetrance (D1) models. Subsequentially, we ran a secondary analysis under the models dominant with incomplete penetrance (D2) and recessive with incomplete penetrance (R2). RESULTS: We detected 22 variants in CRHR1 and 1 variant in CRHR2 significantly (p < 0.05) linked to or in LD with PCOS across different inheritance models. CONCLUSIONS: This is the first study to report CRHR1 and CRHR2 as novel risk genes in PCOS. In silico analysis predicted that the detected CRHR1 and CRHR2 risk variants promote negative chromatin activation of their related genes in the ovaries, potentially affecting the female cycle and ovulation. However, CRHR1- and CRHR2-risk variants might also lead to hypercortisolism and confer mental-metabolic pleiotropic effects. Functional studies are needed to confirm the pathogenicity of genes and related variants.
Assuntos
Diabetes Mellitus Tipo 2 , Síndrome do Ovário Policístico , Feminino , Humanos , Hormônio Liberador da Corticotropina/genética , Hormônio Liberador da Corticotropina/metabolismo , Hormônio Liberador da Corticotropina/farmacologia , Sistema Hipotálamo-Hipofisário/metabolismo , Síndrome do Ovário Policístico/genética , Receptores de Hormônio Liberador da Corticotropina/genética , Receptores de Hormônio Liberador da Corticotropina/metabolismoRESUMO
PURPOSE: The terminology used for gene-disease curation and variant annotation to describe inheritance, allelic requirement, and both sequence and functional consequences of a variant is currently not standardized. There is considerable discrepancy in the literature and across clinical variant reporting in the derivation and application of terms. Here we standardize the terminology for the characterization of disease-gene relationships to facilitate harmonized global curation, and to support variant classification within the ACMG/AMP framework. METHODS: Terminology for inheritance, allelic requirement, and both structural and functional consequences of a variant used by Gene Curation Coalition (GenCC) members and partner organizations was collated and reviewed. Harmonized terminology with definitions and use examples was created, reviewed, and validated. RESULTS: We present a standardized terminology to describe gene-disease relationships, and to support variant annotation. We demonstrate application of the terminology for classification of variation in the ACMG SF 2.0 genes recommended for reporting of secondary findings. Consensus terms were agreed and formalized in both sequence ontology (SO) and human phenotype ontology (HPO) ontologies. GenCC member groups intend to use or map to these terms in their respective resources. CONCLUSION: The terminology standardization presented here will improve harmonization, facilitate the pooling of curation datasets across international curation efforts and, in turn, improve consistency in variant classification and genetic test interpretation.
RESUMO
Hereditary spinocerebellar degenerations (SCDs) is an umbrella term that covers a group of monogenic conditions that share common pathogenic mechanisms and include hereditary spastic paraplegia (HSP), cerebellar ataxia, and spinocerebellar ataxia. They are often complicated with axonal neuropathy and/or intellectual impairment and overlap with many neurological conditions, including neurodevelopmental disorders. More than 200 genes and loci inherited through all modes of Mendelian inheritance are known. Autosomal recessive inheritance predominates in consanguineous communities; however, autosomal dominant and X-linked inheritance can also occur. Sudan is inhabited by genetically diverse populations, yet it has high consanguinity rates. We used next-generation sequencing, genotyping, bioinformatics analysis, and candidate gene approaches to study 90 affected patients from 38 unrelated Sudanese families segregating multiple forms of SCDs. The age-at-onset in our cohort ranged from birth to 35 years; however, most patients manifested childhood-onset diseases (the mean and median ages at onset were 7.5 and 3 years, respectively). We reached the genetic diagnosis in 63% and possibly up to 73% of the studied families when considering variants of unknown significance. Combining the present data with our previous analysis of 25 Sudanese HSP families, the success rate reached 52-59% (31-35/59 families). In this article we report candidate variants in genes previously known to be associated with SCDs or other phenotypically related monogenic disorders. We also highlight the genetic and clinical heterogeneity of SCDs in Sudan, as we did not identify a major causative gene in our cohort, and the potential for discovering novel SCD genes in this population.
RESUMO
BACKGROUND: The etiology of intellectual disabilities is diverse and includes both genetic and environmental factors. The genetic causes of intellectual disabilities range from chromosomal aberrations to single gene disorders. The TRAPPC9 gene has been reported to cause autosomal recessive forms of intellectual disabilities in 56 patients from consanguineous and non-consanguineous families around the world. METHODS: We analyzed two siblings with intellectual disability, microcephaly and delayed motor and speech development from a consanguineous Sudanese family. Genomic DNA was screened for mutations using NGS panel (NextSeq500 Illumina) testing 173 microcephaly associated genes in the Molecular Genetics service in Robert Debre hospital in Paris, France. RESULTS: A novel homozygous mutation (NM_031466.7 (TRAPPC9):c.2288dup, p. (Val764Glyfs*7) in exon 14 of TRAPPC9 gene was found in the two patients. The mutation was predicted to cause nonsense mediated decay (NSMD) using SIFT prediction tool. The variant has not been found in either gnomAD or Exac databases. Both parents were heterozygous (carriers) to the mutation. CONCLUSION: This is the first study to report patients with TRAPPC9-related disorder from Sub-Saharan Africa.
Assuntos
Deficiência Intelectual , Microcefalia , Humanos , Deficiência Intelectual/genética , Microcefalia/genética , Proteínas de Transporte/genética , Peptídeos e Proteínas de Sinalização Intercelular/genética , Mutação , LinhagemRESUMO
Pontocerebellar hypoplasia type 10 (PCH10) is a very rare autosomal recessive neurodegenerative disease characterized by intellectual disability, microcephaly, severe developmental delay, pyramidal signs, mild cerebellar atrophy, and white matter changes in the brain, as shown by magnetic resonance imaging (MRI). The disease has been described in only twenty-one patients from ten Turkish families with a founder missense pathogenic variant in the CLP1 gene involved in tRNA processing and maturation. We analyzed three siblings from a consanguineous Sudanese family who presented with intellectual disability, dysmorphic features, developmental delay, regression of milestones, microcephaly, epilepsy, extrapyramidal signs, mild pontine, and cerebellar atrophy. We identified through whole-exome sequencing the same pathogenic variant (c.419G>A; p(Arg140His) reported before in all Turkish families. Our study extends the phenotypes of PCH10 and reports for the first time cases with PCH10 of non-Turkish origin.