Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
1.
Cell ; 183(7): 1913-1929.e26, 2020 12 23.
Artigo em Inglês | MEDLINE | ID: mdl-33333020

RESUMO

Neurons in the cerebral cortex connect through descending pathways to hindbrain and spinal cord to activate muscle and generate movement. Although components of this pathway have been previously generated and studied in vitro, the assembly of this multi-synaptic circuit has not yet been achieved with human cells. Here, we derive organoids resembling the cerebral cortex or the hindbrain/spinal cord and assemble them with human skeletal muscle spheroids to generate 3D cortico-motor assembloids. Using rabies tracing, calcium imaging, and patch-clamp recordings, we show that corticofugal neurons project and connect with spinal spheroids, while spinal-derived motor neurons connect with muscle. Glutamate uncaging or optogenetic stimulation of cortical spheroids triggers robust contraction of 3D muscle, and assembloids are morphologically and functionally intact for up to 10 weeks post-fusion. Together, this system highlights the remarkable self-assembly capacity of 3D cultures to form functional circuits that could be used to understand development and disease.


Assuntos
Córtex Cerebral/fisiologia , Córtex Motor/fisiologia , Organoides/fisiologia , Animais , Cálcio/metabolismo , Diferenciação Celular , Células Cultivadas , Vértebras Cervicais , Regulação da Expressão Gênica , Glutamatos/metabolismo , Humanos , Células-Tronco Pluripotentes Induzidas/citologia , Camundongos , Músculos/fisiologia , Mioblastos/metabolismo , Rede Nervosa/fisiologia , Optogenética , Organoides/ultraestrutura , Rombencéfalo/fisiologia , Esferoides Celulares/citologia , Medula Espinal/citologia
2.
Nature ; 610(7931): 319-326, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36224417

RESUMO

Self-organizing neural organoids represent a promising in vitro platform with which to model human development and disease1-5. However, organoids lack the connectivity that exists in vivo, which limits maturation and makes integration with other circuits that control behaviour impossible. Here we show that human stem cell-derived cortical organoids transplanted into the somatosensory cortex of newborn athymic rats develop mature cell types that integrate into sensory and motivation-related circuits. MRI reveals post-transplantation organoid growth across multiple stem cell lines and animals, whereas single-nucleus profiling shows progression of corticogenesis and the emergence of activity-dependent transcriptional programs. Indeed, transplanted cortical neurons display more complex morphological, synaptic and intrinsic membrane properties than their in vitro counterparts, which enables the discovery of defects in neurons derived from individuals with Timothy syndrome. Anatomical and functional tracings show that transplanted organoids receive thalamocortical and corticocortical inputs, and in vivo recordings of neural activity demonstrate that these inputs can produce sensory responses in human cells. Finally, cortical organoids extend axons throughout the rat brain and their optogenetic activation can drive reward-seeking behaviour. Thus, transplanted human cortical neurons mature and engage host circuits that control behaviour. We anticipate that this approach will be useful for detecting circuit-level phenotypes in patient-derived cells that cannot otherwise be uncovered.


Assuntos
Vias Neurais , Organoides , Animais , Animais Recém-Nascidos , Transtorno Autístico , Humanos , Síndrome do QT Longo , Motivação , Neurônios/fisiologia , Optogenética , Organoides/citologia , Organoides/inervação , Organoides/transplante , Ratos , Recompensa , Córtex Somatossensorial/citologia , Córtex Somatossensorial/fisiologia , Células-Tronco/citologia , Sindactilia
4.
bioRxiv ; 2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38559133

RESUMO

The ascending somatosensory pathways convey crucial information about pain, touch, itch, and body part movement from peripheral organs to the central nervous system. Despite a significant need for effective therapeutics modulating pain and other somatosensory modalities, clinical translation remains challenging, which is likely related to species-specific features and the lack of in vitro models to directly probe and manipulate this polysynaptic pathway. Here, we established human ascending somatosensory assembloids (hASA)- a four-part assembloid completely generated from human pluripotent stem cells that integrates somatosensory, spinal, diencephalic, and cortical organoids to model the human ascending spinothalamic pathway. Transcriptomic profiling confirmed the presence of key cell types in this circuit. Rabies tracing and calcium imaging showed that sensory neurons connected with dorsal spinal cord projection neurons, which ascending axons further connected to thalamic neurons. Following noxious chemical stimulation, single neuron calcium imaging of intact hASA demonstrated coordinated response, while four-part concomitant extracellular recordings and calcium imaging revealed synchronized activity across the assembloid. Loss of the sodium channel SCN9A, which causes pain insensitivity in humans, disrupted synchrony across the four-part hASA. Taken together, these experiments demonstrate the ability to functionally assemble the essential components of the human sensory pathway. These findings could both accelerate our understanding of human sensory circuits and facilitate therapeutic development.

5.
bioRxiv ; 2024 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-38979350

RESUMO

Organizers are specialized cell populations that orchestrate cell patterning and axon guidance in the developing nervous system. Although non-human models have led to fundamental discoveries about the organization of the nervous system midline by the floor plate, an experimental model of human floor plate would enable broader insights into regulation of human neurodevelopment and midline connectivity. Here, we have developed stem cell-derived organoids resembling human floor plate (hFpO) and assembled them with spinal cord organoids (hSpO) to generate midline assembloids (hMA). We demonstrate that hFpO promote Sonic hedgehog-dependent ventral patterning of human spinal progenitors and Netrin-dependent guidance of human commissural axons, paralleling non-human models. To investigate evolutionary-divergent midline regulators, we profiled the hFpO secretome and identified 27 evolutionarily divergent genes between human and mouse. Utilizing the hMA platform, we targeted these candidates in an arrayed CRISPR knockout screen and reveal that GALNT2 , a gene involved in O-linked glycosylation, impairs floor plate-mediated guidance of commissural axons in humans. This novel platform extends prior axon guidance discoveries into human-specific neurobiology with implications for mechanisms of nervous system evolution and neurodevelopmental disorders.

6.
bioRxiv ; 2023 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-37398073

RESUMO

Morphogens choreograph the generation of remarkable cellular diversity in the developing nervous system. Differentiation of stem cells toward particular neural cell fates in vitro often relies upon combinatorial modulation of these signaling pathways. However, the lack of a systematic approach to understand morphogen-directed differentiation has precluded the generation of many neural cell populations, and knowledge of the general principles of regional specification remain in-complete. Here, we developed an arrayed screen of 14 morphogen modulators in human neural organoids cultured for over 70 days. Leveraging advances in multiplexed RNA sequencing technology and annotated single cell references of the human fetal brain we discovered that this screening approach generated considerable regional and cell type diversity across the neural axis. By deconvoluting morphogen-cell type relationships, we extracted design principles of brain region specification, including critical morphogen timing windows and combinatorics yielding an array of neurons with distinct neuro-transmitter identities. Tuning GABAergic neural subtype diversity unexpectedly led to the derivation of primate-specific interneurons. Taken together, this serves as a platform towards an in vitro morphogen atlas of human neural cell differentiation that will bring insights into human development, evolution, and disease.

7.
Nat Neurosci ; 26(5): 902-914, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37095394

RESUMO

Understanding spinal cord assembly is essential to elucidate how motor behavior is controlled and how disorders arise. The human spinal cord is exquisitely organized, and this complex organization contributes to the diversity and intricacy of motor behavior and sensory processing. But how this complexity arises at the cellular level in the human spinal cord remains unknown. Here we transcriptomically profiled the midgestation human spinal cord with single-cell resolution and discovered remarkable heterogeneity across and within cell types. Glia displayed diversity related to positional identity along the dorso-ventral and rostro-caudal axes, while astrocytes with specialized transcriptional programs mapped into white and gray matter subtypes. Motor neurons clustered at this stage into groups suggestive of alpha and gamma neurons. We also integrated our data with multiple existing datasets of the developing human spinal cord spanning 22 weeks of gestation to investigate the cell diversity over time. Together with mapping of disease-related genes, this transcriptomic mapping of the developing human spinal cord opens new avenues for interrogating the cellular basis of motor control in humans and guides human stem cell-based models of disease.


Assuntos
Medula Espinal , Transcriptoma , Humanos , Neurônios Motores/metabolismo , Neuroglia , Substância Cinzenta
8.
STAR Protoc ; 3(1): 101130, 2022 03 18.
Artigo em Inglês | MEDLINE | ID: mdl-35146446

RESUMO

microRNAs (miRNAs) have unique gene regulatory effects in different neuronal subpopulations. Here, we describe a protocol to identify neuronal subtype-specific effects of a miRNA in murine motor neuron subpopulations. We detail the preparation of primary mouse spinal tissue for single cell RNA sequencing and bioinformatics analyses of pseudobulk expression data. This protocol applies differential gene expression testing approaches to identify miRNA target networks in heterogeneous neuronal subpopulations that cannot otherwise be captured by bulk RNA sequencing approaches. For complete details on the use and execution of this protocol, please refer to Amin et al. (2021).


Assuntos
MicroRNAs , Animais , Biologia Computacional/métodos , Regulação da Expressão Gênica , Camundongos , MicroRNAs/genética , Neurônios , Análise de Sequência de RNA
9.
Neuron ; 110(24): 4090-4107.e11, 2022 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-36240771

RESUMO

The nervous system requires metabolites and oxygen supplied by the neurovascular network, but this necessitates close apposition of neurons and endothelial cells. We find motor neurons attract vessels with long-range VEGF signaling, but endothelial cells in the axonal pathway are an obstacle for establishing connections with muscles. It is unclear how this paradoxical interference from heterotypic neurovascular contacts is averted. Through a mouse mutagenesis screen, we show that Plexin-D1 receptor is required in endothelial cells for development of neuromuscular connectivity. Motor neurons release Sema3C to elicit short-range repulsion via Plexin-D1, thus displacing endothelial cells that obstruct axon growth. When this signaling pathway is disrupted, epaxial motor neurons are blocked from reaching their muscle targets and concomitantly vascular patterning in the spinal cord is altered. Thus, an integrative system of opposing push-pull cues ensures detrimental axon-endothelial encounters are avoided while enabling vascularization within the nervous system and along peripheral nerves.


Assuntos
Semaforinas , Remodelação Vascular , Animais , Camundongos , Células Endoteliais/metabolismo , Neurônios Motores/metabolismo , Axônios/metabolismo , Medula Espinal/metabolismo , Semaforinas/metabolismo
10.
Bioorg Med Chem Lett ; 21(21): 6533-7, 2011 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-21940166

RESUMO

Mycobacterium tuberculosis (Mtb) and Yersinia pestis (Yp) produce siderophores with scaffolds of nonribosomal peptide-polyketide origin. Compounds with structural similarities to these siderophores were synthesized and evaluated as antimicrobials against Mtb and Yp under iron-limiting conditions mimicking the iron scarcity these pathogens encounter in the host and under standard iron-rich conditions. Several new antimicrobials were identified, including some with increased potency in the iron-limiting condition. Our study illustrates the possibility of screening compound libraries in both iron-rich and iron-limiting conditions to identify antimicrobials that may selectively target iron scarcity-adapted bacteria and highlights the usefulness of building combinatorial libraries of compounds having scaffolds with structural similarities to siderophores to feed into antimicrobial screening programs.


Assuntos
Antibacterianos/química , Antibacterianos/farmacologia , Mycobacterium tuberculosis/efeitos dos fármacos , Policetídeos/química , Policetídeos/farmacologia , Sideróforos/química , Yersinia pestis/efeitos dos fármacos , Testes de Sensibilidade Microbiana
11.
Neuron ; 109(20): 3252-3267.e6, 2021 10 20.
Artigo em Inglês | MEDLINE | ID: mdl-34450025

RESUMO

Disruption of homeostatic microRNA (miRNA) expression levels is known to cause human neuropathology. However, the gene regulatory and phenotypic effects of altering a miRNA's in vivo abundance (rather than its binary gain or loss) are not well understood. By genetic combination, we generated an allelic series of mice expressing varying levels of miR-218, a motor neuron-selective gene regulator associated with motor neuron disease. Titration of miR-218 cellular dose unexpectedly revealed complex, non-ratiometric target mRNA dose responses and distinct gene network outputs. A non-linearly responsive regulon exhibited a steep miR-218 dose-dependent threshold in repression that, when crossed, resulted in severe motor neuron synaptic failure and death. This work demonstrates that a miRNA can govern distinct gene network outputs at different expression levels and that miRNA-dependent phenotypes emerge at particular dose ranges because of hidden regulatory inflection points of their underlying gene networks.


Assuntos
Dosagem de Genes , Redes Reguladoras de Genes/genética , MicroRNAs/genética , Doença dos Neurônios Motores/genética , Neurônios Motores/metabolismo , Animais , Camundongos , Camundongos Knockout , Análise de Sequência de RNA , Análise de Célula Única
12.
Science ; 372(6540): 385-393, 2021 04 23.
Artigo em Inglês | MEDLINE | ID: mdl-33888637

RESUMO

Motor and sensory functions of the spinal cord are mediated by populations of cardinal neurons arising from separate progenitor lineages. However, each cardinal class is composed of multiple neuronal types with distinct molecular, anatomical, and physiological features, and there is not a unifying logic that systematically accounts for this diversity. We reasoned that the expansion of new neuronal types occurred in a stepwise manner analogous to animal speciation, and we explored this by defining transcriptomic relationships using a top-down approach. We uncovered orderly genetic tiers that sequentially divide groups of neurons by their motor-sensory, local-long range, and excitatory-inhibitory features. The genetic signatures defining neuronal projections were tied to neuronal birth date and conserved across cardinal classes. Thus, the intersection of cardinal class with projection markers provides a unifying taxonomic solution for systematically identifying distinct functional subsets.


Assuntos
Vias Neurais , Neurônios/fisiologia , Medula Espinal/citologia , Transcriptoma , Animais , Medula Cervical/citologia , Feminino , Masculino , Camundongos , Neurônios Motores/fisiologia , Propriocepção , RNA-Seq , Células Receptoras Sensoriais/fisiologia , Análise de Célula Única , Análise Espacial , Medula Espinal/embriologia , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
13.
Nat Med ; 26(12): 1888-1898, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32989314

RESUMO

22q11.2 deletion syndrome (22q11DS) is a highly penetrant and common genetic cause of neuropsychiatric disease. Here we generated induced pluripotent stem cells from 15 individuals with 22q11DS and 15 control individuals and differentiated them into three-dimensional (3D) cerebral cortical organoids. Transcriptional profiling across 100 days showed high reliability of differentiation and revealed changes in neuronal excitability-related genes. Using electrophysiology and live imaging, we identified defects in spontaneous neuronal activity and calcium signaling in both organoid- and 2D-derived cortical neurons. The calcium deficit was related to resting membrane potential changes that led to abnormal inactivation of voltage-gated calcium channels. Heterozygous loss of DGCR8 recapitulated the excitability and calcium phenotypes and its overexpression rescued these defects. Moreover, the 22q11DS calcium abnormality could also be restored by application of antipsychotics. Taken together, our study illustrates how stem cell derived models can be used to uncover and rescue cellular phenotypes associated with genetic forms of neuropsychiatric disease.


Assuntos
Sinalização do Cálcio/genética , Córtex Cerebral/ultraestrutura , Síndrome de DiGeorge/diagnóstico , Neurônios/ultraestrutura , Adulto , Diferenciação Celular/genética , Córtex Cerebral/patologia , Síndrome de DiGeorge/patologia , Feminino , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Células-Tronco Pluripotentes Induzidas/ultraestrutura , Masculino , Neurônios/patologia , Organoides/patologia , Organoides/ultraestrutura , Adulto Jovem
14.
Neuron ; 100(2): 389-405, 2018 10 24.
Artigo em Inglês | MEDLINE | ID: mdl-30359604

RESUMO

Disorders of the nervous system are challenging to study and treat due to the relative inaccessibility of functional human brain tissue for research. Stem cell-derived 3D human brain organoids have the potential to recapitulate features of the human brain with greater complexity than 2D models and are increasingly being applied to model diseases affecting the central nervous system. Here, we review the use of human brain organoids to investigate neurological and psychiatric (neuropsychiatric) disorders and how this technology may ultimately advance our biological understanding of these conditions.


Assuntos
Encefalopatias , Técnicas de Cultura de Órgãos/métodos , Organoides , Humanos , Organoides/crescimento & desenvolvimento
15.
Elife ; 62017 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-28195039

RESUMO

Flexible neural networks, such as the interconnected spinal neurons that control distinct motor actions, can switch their activity to produce different behaviors. Both excitatory (E) and inhibitory (I) spinal neurons are necessary for motor behavior, but the influence of recruiting different ratios of E-to-I cells remains unclear. We constructed synthetic microphysical neural networks, called circuitoids, using precise combinations of spinal neuron subtypes derived from mouse stem cells. Circuitoids of purified excitatory interneurons were sufficient to generate oscillatory bursts with properties similar to in vivo central pattern generators. Inhibitory V1 neurons provided dual layers of regulation within excitatory rhythmogenic networks - they increased the rhythmic burst frequency of excitatory V3 neurons, and segmented excitatory motor neuron activity into sub-networks. Accordingly, the speed and pattern of spinal circuits that underlie complex motor behaviors may be regulated by quantitatively gating the intra-network cellular activity ratio of E-to-I neurons.


Assuntos
Interneurônios/fisiologia , Atividade Motora , Neurônios Motores/fisiologia , Rede Nervosa/fisiologia , Medula Espinal/fisiologia , Animais , Células Cultivadas , Células-Tronco Embrionárias/fisiologia , Camundongos
16.
Science ; 350(6267): 1525-9, 2015 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-26680198

RESUMO

Dysfunction of microRNA (miRNA) metabolism is thought to underlie diseases affecting motoneurons. One miRNA, miR-218, is abundantly and selectively expressed by developing and mature motoneurons. Here we show that mutant mice lacking miR-218 die neonatally and exhibit neuromuscular junction defects, motoneuron hyperexcitability, and progressive motoneuron cell loss, all of which are hallmarks of motoneuron diseases such as amyotrophic lateral sclerosis and spinal muscular atrophy. Gene profiling reveals that miR-218 modestly represses a cohort of hundreds of genes that are neuronally enriched but are not specific to a single neuron subpopulation. Thus, the set of messenger RNAs targeted by miR-218, designated TARGET(218), defines a neuronal gene network that is selectively tuned down in motoneurons to prevent neuromuscular failure and neurodegeneration.


Assuntos
Regulação da Expressão Gênica , MicroRNAs/fisiologia , Doença dos Neurônios Motores/genética , Neurônios Motores/fisiologia , Doenças Neurodegenerativas/genética , Animais , Redes Reguladoras de Genes , Camundongos , Camundongos Knockout , MicroRNAs/genética , Doença dos Neurônios Motores/fisiopatologia , Neurônios Motores/metabolismo , Neurônios Motores/patologia , Doenças Neurodegenerativas/patologia , Medula Espinal/metabolismo , Medula Espinal/fisiopatologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA