Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 256
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Cell ; 187(7): 1801-1818.e20, 2024 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-38471500

RESUMO

The repertoire of modifications to bile acids and related steroidal lipids by host and microbial metabolism remains incompletely characterized. To address this knowledge gap, we created a reusable resource of tandem mass spectrometry (MS/MS) spectra by filtering 1.2 billion publicly available MS/MS spectra for bile-acid-selective ion patterns. Thousands of modifications are distributed throughout animal and human bodies as well as microbial cultures. We employed this MS/MS library to identify polyamine bile amidates, prevalent in carnivores. They are present in humans, and their levels alter with a diet change from a Mediterranean to a typical American diet. This work highlights the existence of many more bile acid modifications than previously recognized and the value of leveraging public large-scale untargeted metabolomics data to discover metabolites. The availability of a modification-centric bile acid MS/MS library will inform future studies investigating bile acid roles in health and disease.


Assuntos
Ácidos e Sais Biliares , Microbioma Gastrointestinal , Metabolômica , Espectrometria de Massas em Tandem , Animais , Humanos , Ácidos e Sais Biliares/química , Metabolômica/métodos , Poliaminas , Espectrometria de Massas em Tandem/métodos , Bases de Dados de Compostos Químicos
2.
Nature ; 626(8000): 859-863, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38326609

RESUMO

Bacteria in the gastrointestinal tract produce amino acid bile acid amidates that can affect host-mediated metabolic processes1-6; however, the bacterial gene(s) responsible for their production remain unknown. Herein, we report that bile salt hydrolase (BSH) possesses dual functions in bile acid metabolism. Specifically, we identified a previously unknown role for BSH as an amine N-acyltransferase that conjugates amines to bile acids, thus forming bacterial bile acid amidates (BBAAs). To characterize this amine N-acyltransferase BSH activity, we used pharmacological inhibition of BSH, heterologous expression of bsh and mutants in Escherichia coli and bsh knockout and complementation in Bacteroides fragilis to demonstrate that BSH generates BBAAs. We further show in a human infant cohort that BBAA production is positively correlated with the colonization of bsh-expressing bacteria. Lastly, we report that in cell culture models, BBAAs activate host ligand-activated transcription factors including the pregnane X receptor and the aryl hydrocarbon receptor. These findings enhance our understanding of how gut bacteria, through the promiscuous actions of BSH, have a significant role in regulating the bile acid metabolic network.


Assuntos
Aciltransferases , Amidoidrolases , Aminas , Ácidos e Sais Biliares , Biocatálise , Microbioma Gastrointestinal , Humanos , Aciltransferases/metabolismo , Amidoidrolases/metabolismo , Aminas/química , Aminas/metabolismo , Bacteroides fragilis/enzimologia , Bacteroides fragilis/genética , Bacteroides fragilis/metabolismo , Ácidos e Sais Biliares/química , Ácidos e Sais Biliares/metabolismo , Estudos de Coortes , Escherichia coli/enzimologia , Escherichia coli/genética , Escherichia coli/metabolismo , Microbioma Gastrointestinal/fisiologia , Ligantes , Receptor de Pregnano X/metabolismo , Receptores de Hidrocarboneto Arílico/metabolismo , Fatores de Transcrição/metabolismo , Lactente , Técnicas de Cultura de Células
3.
FASEB J ; 37(7): e23010, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37272852

RESUMO

The aryl hydrocarbon receptor (AHR) mediates intestinal barrier homeostasis. Many AHR ligands are also CYP1A1/1B1 substrates, which can result in rapid clearance within the intestinal tract, limiting systemic exposure and subsequent AHR activation. This led us to the hypothesis that there are dietary substrates of CYP1A1/1B1 that functionally increase the half-life of potent AHR ligands. We examined the potential of urolithin A (UroA), a gut bacterial metabolite of ellagitannins, as a CYP1A1/1B1 substrate to enhance AHR activity in vivo. UroA is a competitive substrate for CYP1A1/1B1 in an in vitro competition assay. A broccoli-containing diet promotes the gastric formation of the potent hydrophobic AHR ligand and CYP1A1/1B1 substrate, 5,11-dihydroindolo[3,2-b]carbazole (ICZ). In mice, dietary exposure to UroA in a 10% broccoli diet led to a coordinated increase in duodenal, cardiac, and pulmonary AHR activity, but no increase in activity in the liver. Thus, CYP1A1 dietary competitive substrates can lead to enhanced systemic AHR ligand distribution from the gut, likely through the lymphatic system, increasing AHR activation in key barrier tissues. Finally, this report will lead to a reassessment of the dynamics of distribution of other hydrophobic chemicals present in the diet.


Assuntos
Citocromo P-450 CYP1A1 , Trato Gastrointestinal , Pulmão , Receptores de Hidrocarboneto Arílico , Animais , Camundongos , Citocromo P-450 CYP1A1/genética , Citocromo P-450 CYP1A1/metabolismo , Ligantes , Fígado/metabolismo , Pulmão/metabolismo , Receptores de Hidrocarboneto Arílico/metabolismo , Dieta , Trato Gastrointestinal/metabolismo
4.
Pharmacol Res ; 203: 107163, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38569982

RESUMO

Current cancer therapy can be effective, but the development of drug resistant disease is the usual outcome. These drugs can eliminate most of the tumor burden but often fail to eliminate the rare, "Drug Tolerant Persister" (DTP) cell subpopulations in residual tumors, which can be referred to as "Persister" cells. Therefore, novel therapeutic agents specifically targeting or preventing the development of drug-resistant tumors mediated by the remaining persister cells subpopulations are needed. Since approximately ninety percent of cancer-related deaths occur because of the eventual development of drug resistance, identifying, and dissecting the biology of the persister cells is essential for the creation of drugs to target them. While there remains uncertainty surrounding all the markers identifying DTP cells in the literature, this review summarizes the drugs and therapeutic approaches that are available to target the persister cell subpopulations expressing the cellular markers ATP-binding cassette sub-family B member 5 (ABCB5), CD133, CD271, Lysine-specific histone demethylase 5 (KDM5), and aldehyde dehydrogenase (ALDH). Persister cells expressing these markers were selected as the focus of this review because they have been found on cells surviving following drug treatments that promote recurrent drug resistant cancer and are associated with stem cell-like properties, including self-renewal, differentiation, and resistance to therapy. The limitations and obstacles facing the development of agents targeting these DTP cell subpopulations are detailed, with discussion of potential solutions and current research areas needing further exploration.


Assuntos
Antineoplásicos , Resistencia a Medicamentos Antineoplásicos , Neoplasias , Humanos , Neoplasias/tratamento farmacológico , Neoplasias/metabolismo , Neoplasias/patologia , Animais , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Células-Tronco Neoplásicas/efeitos dos fármacos , Células-Tronco Neoplásicas/metabolismo , Tolerância a Medicamentos , Biomarcadores Tumorais/metabolismo , Biomarcadores Tumorais/genética
5.
Molecules ; 29(13)2024 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-38999066

RESUMO

Aldehyde dehydrogenases (ALDHs) are a family of enzymes that aid in detoxification and are overexpressed in several different malignancies. There is a correlation between increased expression of ALDH and a poor prognosis, stemness, and resistance to several drugs. Several ALDH inhibitors have been generated due to the crucial role that ALDH plays in cancer stem cells. All of these inhibitors, however, are either ineffective, very toxic, or have yet to be subjected to rigorous testing on their effectiveness. Although various drug-like compounds targeting ALDH have been reported in the literature, none have made it to routine use in the oncology clinic. As a result, new potent, non-toxic, bioavailable, and therapeutically effective ALDH inhibitors are still needed. In this study, we designed and synthesized potent multi-ALDH isoform inhibitors based on the isatin and indazole pharmacophore. Molecular docking studies and enzymatic tests revealed that among all of the synthesized analogs, compound 3 is the most potent inhibitor of ALDH1A1, ALDH3A1, and ALDH1A3, exhibiting 51.32%, 51.87%, and 36.65% inhibition, respectively. The ALDEFLUOR assay further revealed that compound 3 acts as an ALDH broad spectrum inhibitor at 500 nM. Compound 3 was also the most cytotoxic to cancer cells, with an IC50 in the range of 2.1 to 3.8 µM for ovarian, colon, and pancreatic cancer cells, compared to normal and embryonic kidney cells (IC50 7.1 to 8.7 µM). Mechanistically, compound 3 increased ROS activity due to potent multi-ALDH isoform inhibition, which increased apoptosis. Taken together, this study identified a potent multi-isoform ALDH inhibitor that could be further developed as a cancer therapeutic.


Assuntos
Aldeído Desidrogenase , Inibidores Enzimáticos , Isatina , Simulação de Acoplamento Molecular , Humanos , Isatina/química , Isatina/farmacologia , Aldeído Desidrogenase/antagonistas & inibidores , Aldeído Desidrogenase/metabolismo , Inibidores Enzimáticos/química , Inibidores Enzimáticos/farmacologia , Inibidores Enzimáticos/síntese química , Linhagem Celular Tumoral , Antineoplásicos/farmacologia , Antineoplásicos/química , Antineoplásicos/síntese química , Relação Estrutura-Atividade , Isoenzimas/antagonistas & inibidores , Isoenzimas/metabolismo , Estrutura Molecular
6.
Lab Invest ; 103(2): 100012, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-37039146

RESUMO

In the face of mechanical, chemical, microbial, and immunologic pressure, intestinal homeostasis is maintained through balanced cellular turnover, proliferation, differentiation, and self-renewal. Here, we present evidence supporting the role of the aryl hydrocarbon receptor (AHR) in the adaptive reprogramming of small intestinal gene expression, leading to altered proliferation, lineage commitment, and remodeling of the cellular repertoire that comprises the intestinal epithelium to promote intestinal resilience. Ahr gene/protein expression and transcriptional activity exhibit marked proximalHI to distalLO and cryptHI to villiLO gradients. Genetic ablation of Ahr impairs commitment/differentiation of the secretory Paneth and goblet cell lineages and associated mucin production, restricts expression of secretory/enterocyte differentiation markers, and increases crypt-associated proliferation and villi-associated enterocyte luminal exfoliation. Ahr-/- mice display a decrease in intestinal barrier function. Ahr+/+ mice that maintain a diet devoid of AHR ligands intestinally phenocopy Ahr-/- mice. In contrast, Ahr+/+ mice exposed to AHR ligands reverse these phenotypes. Ligand-induced AHR transcriptional activity positively correlates with gene expression (Math1, Klf4, Tff3) associated with differentiation of the goblet cell secretory lineage. Math1 was identified as a direct target gene of AHR, a transcription factor critical to the development of goblet cells. These data suggest that dietary cues, relayed through the transcriptional activity of AHR, can reshape the cellular repertoire of the gastrointestinal tract.


Assuntos
Células Epiteliais , Receptores de Hidrocarboneto Arílico , Animais , Camundongos , Diferenciação Celular , Células Epiteliais/metabolismo , Mucosa Intestinal/metabolismo , Intestinos , Ligantes , Receptores de Hidrocarboneto Arílico/genética , Receptores de Hidrocarboneto Arílico/metabolismo
7.
Mol Cell Biochem ; 478(3): 621-636, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36001205

RESUMO

Ulcerative colitis (UC) is an idiopathic, chronic and relapsing colonic inflammatory disease. Despite the involvement of diverse intricate mechanisms, COX mediated inflammatory pathway is crucial in the pathophysiology of colitis. Thus, COX inhibition is imperative for managing colitis-associated inflammation. However, the use of COX inhibitory classical non-steroidal anti-inflammatory drugs (NSAIDs) for inflammation resolution has been linked to sudden increased flare-ups. Therefore, considering the anti-inflammatory and pro-resolution effects of antioxidant and essential trace element Selenium (Se), a Seleno-derivative of Celecoxib called Selenocoxib-3 was characterized and evaluated for its favourable pharmacokinetics, safety margins and anti-inflammatory therapeutic potential in DSS-induced experimental colitis. The serum pharmacokinetic profiling [elimination rate constant (K) and clearance (Cl) and toxicity profiling suggested enhanced efficacy, therapeutic potential and lesser toxicity of Selenocoxib-3 as compared to its parent NSAID Celecoxib. In vivo studies demonstrated that Selenocoxib-3 efficiently resolves the gross morphological signs of DSS-induced colitis such as diarrhoea, bloody stools, weight loss and colon shortening. Further, intestinal damage evaluated by H & E staining and MPO activity suggested of histopathological disruptions, such as neutrophil infiltration, mucodepletion and cryptitis, by Selenocoxib-3. The expression profiles of COX-1/2 demonstrated mitigation of pro-inflammatory mediators thereby promoting anti-inflammatory efficacy of Selenocoxib-3 when compared with Celecoxib. The current study suggests translational applicability of Se-containing novel class of COX inhibitors for efficiently managing inflammatory disorders such as UC.


Assuntos
Colite Ulcerativa , Colite , Animais , Celecoxib/efeitos adversos , Anti-Inflamatórios/farmacologia , Colite/metabolismo , Colite Ulcerativa/induzido quimicamente , Colite Ulcerativa/tratamento farmacológico , Colite Ulcerativa/patologia , Anti-Inflamatórios não Esteroides/farmacologia , Colo , Inflamação/metabolismo , Ciclo-Oxigenase 2/metabolismo , Sulfato de Dextrana/farmacologia , Modelos Animais de Doenças
8.
Carcinogenesis ; 43(8): 746-753, 2022 09 19.
Artigo em Inglês | MEDLINE | ID: mdl-35749296

RESUMO

Polycyclic aromatic hydrocarbons (PAHs) are recognized as potential etiological agents in the development of oral cancer in smokers. In particular, benzo[a]pyrene (B[a]P) and dibenzo[def,p]chrysene (DB[a,l]P) are detected in cigarette smoke and the environment and can induce DNA damage, mutagenesis and carcinogenesis in the oral cavity of rodents. Consequently, DNA adducts are regarded as the most direct markers of genotoxicity and can be used as biomarkers of cancer risk. Thus, this study used LC-MS/MS analysis with isotope labeled internal standard to detect and quantify DNA adducts derived from B[a]P and DB[a,l]P in buccal cells of cigarette smokers and non-smokers. Participants in this study include 21 smokers and 16 non-smokers. Our data are the first to report that levels (mean ± SD) of BPDE-N2-dG were significantly (P < 0.001) higher in smokers (20.18 ± 8.40 adducts/108 dG) than in non-smokers (0.84 ± 1.02 adducts/108 dG). Likewise, levels of DBPDE-N6-dA in smokers (5.49 ± 3.41 adducts/108 dA) were significantly higher (P = 0.019) than non-smokers (2.76 ± 2.29 adducts/108 dA). Collectively, the results of this clinical study support that PAHs in tobacco smoke can contribute to the development of oral cancer in humans.


Assuntos
Neoplasias Bucais , Hidrocarbonetos Policíclicos Aromáticos , Produtos do Tabaco , Poluição por Fumaça de Tabaco , Benzo(a)pireno/toxicidade , Carcinógenos/análise , Carcinógenos/toxicidade , Cromatografia Líquida , Crisenos/análise , Adutos de DNA , Humanos , Mucosa Bucal , Neoplasias Bucais/induzido quimicamente , Neoplasias Bucais/genética , Hidrocarbonetos Policíclicos Aromáticos/toxicidade , Espectrometria de Massas em Tandem , Nicotiana/efeitos adversos , Produtos do Tabaco/toxicidade
9.
Blood ; 136(13): 1520-1534, 2020 09 24.
Artigo em Inglês | MEDLINE | ID: mdl-32396934

RESUMO

High-risk B-cell acute lymphoblastic leukemia (B-ALL) is an aggressive disease, often characterized by resistance to chemotherapy. A frequent feature of high-risk B-ALL is loss of function of the IKAROS (encoded by the IKZF1 gene) tumor suppressor. Here, we report that IKAROS regulates expression of the BCL2L1 gene (encodes the BCL-XL protein) in human B-ALL. Gain-of-function and loss-of-function experiments demonstrate that IKAROS binds to the BCL2L1 promoter, recruits histone deacetylase HDAC1, and represses BCL2L1 expression via chromatin remodeling. In leukemia, IKAROS' function is impaired by oncogenic casein kinase II (CK2), which is overexpressed in B-ALL. Phosphorylation by CK2 reduces IKAROS binding and recruitment of HDAC1 to the BCL2L1 promoter. This results in a loss of IKAROS-mediated repression of BCL2L1 and increased expression of BCL-XL. Increased expression of BCL-XL and/or CK2, as well as reduced IKAROS expression, are associated with resistance to doxorubicin treatment. Molecular and pharmacological inhibition of CK2 with a specific inhibitor CX-4945, increases binding of IKAROS to the BCL2L1 promoter and enhances IKAROS-mediated repression of BCL2L1 in B-ALL. Treatment with CX-4945 increases sensitivity to doxorubicin in B-ALL, and reverses resistance to doxorubicin in multidrug-resistant B-ALL. Combination treatment with CX-4945 and doxorubicin show synergistic therapeutic effects in vitro and in preclinical models of high-risk B-ALL. Results reveal a novel signaling network that regulates chemoresistance in leukemia. These data lay the groundwork for clinical testing of a rationally designed, targeted therapy that combines the CK2 inhibitor, CX-4945, with doxorubicin for the treatment of hematopoietic malignancies.


Assuntos
Caseína Quinase II/genética , Resistencia a Medicamentos Antineoplásicos , Regulação Leucêmica da Expressão Gênica , Fator de Transcrição Ikaros/genética , Leucemia-Linfoma Linfoblástico de Células Precursoras/genética , Proteína bcl-X/genética , Animais , Antibióticos Antineoplásicos/farmacologia , Antibióticos Antineoplásicos/uso terapêutico , Linhagem Celular Tumoral , Doxorrubicina/farmacologia , Doxorrubicina/uso terapêutico , Regulação Leucêmica da Expressão Gênica/efeitos dos fármacos , Humanos , Camundongos , Leucemia-Linfoma Linfoblástico de Células Precursoras/tratamento farmacológico
10.
Chem Res Toxicol ; 35(11): 2152-2159, 2022 11 21.
Artigo em Inglês | MEDLINE | ID: mdl-36260657

RESUMO

In a series of previous studies we reported that black raspberry (BRB) powder inhibits dibenzo[a,l]pyrene (DBP)-induced DNA damage, mutagenesis, and oral squamous cell carcinoma (OSCC) development in mice. In the present study, using human oral leukoplakia (MSK-Leuk1) and squamous cell carcinoma (SCC1483) cells, we tested the hypothesis that BRB extract (BRBE) will enhance the synthesis of glutathione (GSH) and in turn increase GSH conjugation of the fjord-region DBP diol epoxide (DBPDE) derived from DBP leading to inhibition of DBP-induced DNA damage. The syntheses of DBPDE-GSH conjugate, DBPDE-dA adduct, and the corresponding isotope-labeled internal standards were performed; LC-MS/MS methods were used for their quantification. BRBE significantly (p < 0.05) increased cellular GSH by 31% and 13% at 6 and 24 h, respectively, in OSCC cells; in MSK-LeuK1 cells, the levels of GSH significantly (p < 0.05) increased by 55% and 22%, at 1 and 6 h. Since BRBE significantly enhanced the synthesis of GSH in both cell types, subsequent experiments were performed in MSK-Leuk1 cells. Western blot analysis was performed to determine the types of proteins involved in the synthesis of GSH. BRBE significantly (p < 0.05) increased the protein expression (2.5-fold) of the glutamate-cysteine ligase catalytic subunit (GCLC) but had no effect on the glutamate-cysteine ligase modifier subunit (GCLM) and glutathione synthetase (GSS). LC-MS/MS analysis showed that pretreatment of cells with BRBE followed by DBPDE significantly (p < 0.05) increased the levels of DBPDE-GSH conjugate (2.5-fold) and decreased DNA damage by 74% measured by assessing levels of DBPDE-dA adduct formation. Collectively, the results of this in vitro study clearly support our hypothesis, and the LC-MS/MS methods developed in the present study will be highly useful in testing the same hypothesis initially in our mouse model and ultimately in smokers.


Assuntos
Carcinoma de Células Escamosas , Neoplasias Bucais , Rubus , Humanos , Camundongos , Animais , Carcinógenos , Crisenos , Benzopirenos/metabolismo , Compostos de Epóxi , Nicotiana/metabolismo , Glutamato-Cisteína Ligase , Adutos de DNA , Cromatografia Líquida , Estuários , Neoplasias Bucais/induzido quimicamente , Espectrometria de Massas em Tandem , Glutationa/metabolismo , Extratos Vegetais/farmacologia
11.
Mol Psychiatry ; 26(2): 645-655, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-30532019

RESUMO

Dopamine D1 agonists enhance cognition, but the role of different signaling pathways (e.g., cAMP or ß-arrestin) is unclear. The current study compared 2-methyldihydrexidine and CY208,243, drugs with different degrees of both D1 intrinsic activity and functional selectivity. 2-Methyldihydrexidine is a full agonist at adenylate cyclase and a super-agonist at ß-arrestin recruitment, whereas CY208,243 has relatively high intrinsic activity at adenylate cyclase, but much lower at ß-arrestin recruitment. Both drugs decreased, albeit in dissimilar ways, the firing rate of neurons in prefrontal cortex sensitive to outcome-related aspects of a working memory task. 2-Methyldihydrexidine was superior to CY208,243 in prospectively enhancing similarity and retrospectively distinguishing differences between correct and error outcomes based on firing rates, enhancing the micro-network measured by oscillations of spikes and local field potentials, and improving behavioral performance. This study is the first to examine how ligand signaling bias affects both behavioral and neurophysiological endpoints in the intact animal. The data show that maximal enhancement of cognition via D1 activation occurred with a pattern of signaling that involved full unbiased intrinsic activity, or agonists with high ß-arrestin activity.


Assuntos
Dopamina , Memória de Curto Prazo , Animais , Agonistas de Dopamina/farmacologia , Córtex Pré-Frontal/metabolismo , Receptores de Dopamina D1/metabolismo , Estudos Retrospectivos
12.
Langmuir ; 38(32): 9833-9843, 2022 08 16.
Artigo em Inglês | MEDLINE | ID: mdl-35916504

RESUMO

In this study, we utilized selectively modified, biodegradable polymer-based polyplexes to deliver custom, exogenous miR-148b mimics to induce apoptosis in human lung cancer (A549) cells. The gene regulatory effects of the payload miRNA mimics (miR-148b-3p) were first evaluated through bioinformatic analyses to uncover specific gene targets involved in critical carcinogenic pathways. Hyperbranched poly(ß amino ester) polyplexes (hPBAE) loaded with custom miR-148b mimics were then developed for targeted therapy. When evaluated in vitro, these hPBAE-based polyplexes sustained high intracellular uptake, low cytotoxicity, and efficient escape from endosomes to deliver functionally intact miRNA mimics to the cytosol. High-resolution confocal microscopy revealed successful intracellular uptake, cell viability was assessed through qualitative fluorescence microscopy and fluorescence-based DNA quantification, and successful cytosolic delivery of intact miRNA mimics was evaluated using real-time polymerase chain reaction (RT-PCR) to demonstrate target gene knockdown. The hPBAE-miRNA mimic polyplexes were shown to induce apoptosis among A549 cells through direct modulation of intracellular protein expression, targeting multiple potential carcinogenic pathways at the gene level. These results indicated that spatially controlled miR-148b mimic delivery can promote efficient cancer cell death in vitro and may lead to an enhanced therapeutic design for in vivo application.


Assuntos
Ésteres , MicroRNAs , Células A549 , Apoptose , Proliferação de Células , Humanos , MicroRNAs/genética , Poli A , Polímeros
13.
Int J Mol Sci ; 23(7)2022 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-35408842

RESUMO

Decreasing the levels of certain proteins has been shown to be important for controlling cancer but it is currently unknown whether proteins could potentially be targeted by the inhibiting of protein synthesis. Under this circumstance, targeting protein translation could preferentially affect certain pathways, which could then be of therapeutic advantage when treating cancer. In this report, eukaryotic elongation factor-2 kinase (EEF2K), which is involved in protein translation, was shown to regulate cholesterol metabolism. Targeting EEF2K inhibited key parts of the cholesterol pathway in cancer cells, which could be rescued by the addition of exogenous cholesterol, suggesting that it is a potentially important pathway modulated by targeting this process. Specifically, targeting EEF2K significantly suppressed tumour cell growth by blocking mRNA translation of the cholesterol biosynthesis transcription factor, sterol regulatory element-binding protein (SREBP) 2, and the proteins it regulates. The process could be rescued by the addition of LDL cholesterol taken into the cells via non-receptor-mediated-uptake, which negated the need for SREBP2 protein. Thus, the levels of SREBP2 needed for cholesterol metabolism in cancer cells are therapeutically vulnerable by targeting protein translation. This is the first report to suggest that targeting EEF2K can be used to modulate cholesterol metabolism to treat cancer.


Assuntos
Quinase do Fator 2 de Elongação , Melanoma , Colesterol/metabolismo , Quinase do Fator 2 de Elongação/genética , Quinase do Fator 2 de Elongação/metabolismo , Humanos , Biossíntese de Proteínas , Proteína de Ligação a Elemento Regulador de Esterol 2/genética , Proteína de Ligação a Elemento Regulador de Esterol 2/metabolismo
14.
Molecules ; 27(3)2022 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-35164150

RESUMO

Natural products are a major source of biologically active compounds that make promising lead molecules for developing efficacious drug-like molecules. Natural withanolides are found in many flora and fauna, including plants, algae, and corals, that traditionally have shown multiple health benefits and are known for their anti-cancer, anti-inflammatory, anti-bacterial, anti-leishmaniasis, and many other medicinal properties. Structures of these withanolides possess a few reactive sites that can be exploited to design and synthesize more potent and safe analogs. In this review, we discuss the literature evidence related to the medicinal implications, particularly anticancer properties of natural withanolides and their synthetic analogs, and provide perspectives on the translational potential of these promising compounds.


Assuntos
Antineoplásicos/química , Antineoplásicos/uso terapêutico , Neoplasias/tratamento farmacológico , Vitanolídeos/química , Vitanolídeos/uso terapêutico , Animais , Anti-Inflamatórios/síntese química , Anti-Inflamatórios/química , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/uso terapêutico , Antineoplásicos/síntese química , Antineoplásicos/farmacologia , Desenho de Fármacos , Descoberta de Drogas , Humanos , Vitanolídeos/síntese química , Vitanolídeos/farmacologia
15.
Int J Mol Sci ; 22(9)2021 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-34067020

RESUMO

Current available therapies for pancreatic ductal adenocarcinoma (PDAC) provide minimal overall survival benefits and cause severe adverse effects. We have identified a novel molecule AS-10, a selenazolidine-bis-aspirinyl derivative, that was two to three orders of magnitude more potent than aspirin and at least one to two orders of magnitude more potent than gemcitabine in inhibiting PDAC cancer cell growth/viability against three PDAC cell lines while sparing mouse embryonic fibroblasts in the same exposure range. In Panc-1 cells, AS-10 induced apoptosis without necrosis, principally through caspase-3/7 cascade and reactive oxygen species, in addition to an induction of G1 cell cycle block. Transcriptomic profiling with RNA-seq indicated the top responses to AS-10 exposure as CDKN1A (P21Cip1), CCND1, and nuclear transcription factor-kappa B (NF-κB) complex and the top functions as cell cycle, cell death, and survival without inducing the DNA damage gene signature. AS-10 pretreatment (6 h) decreased cytokine tumor necrosis factor-alpha (TNF-α)-stimulated NF-κB nuclear translocation, DNA binding activity, and degradation of cytosolic inhibitor of κB (IκB) protein. As NF-κB activation in PDAC cells confers resistance to gemcitabine, the AS-10 combination with gemcitabine increased the in vitro cytotoxicity more than the additivity of both compounds. Overall, our results suggest AS-10 may be a promising drug lead for PDAC, both as a single agent and in combination therapy.


Assuntos
Adenocarcinoma/patologia , Apoptose , Aspirina/farmacologia , Carcinoma Ductal Pancreático/patologia , Desoxicitidina/análogos & derivados , Pontos de Checagem da Fase G1 do Ciclo Celular , NF-kappa B/metabolismo , Neoplasias Pancreáticas/patologia , Acetilcisteína/farmacologia , Adenocarcinoma/genética , Apoptose/efeitos dos fármacos , Apoptose/genética , Aspirina/química , Carcinoma Ductal Pancreático/genética , Caspases/metabolismo , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Citocinas/metabolismo , Desoxicitidina/farmacologia , Ativação Enzimática/efeitos dos fármacos , Pontos de Checagem da Fase G1 do Ciclo Celular/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Mediadores da Inflamação/metabolismo , Neoplasias Pancreáticas/genética , Transdução de Sinais/efeitos dos fármacos , Transcriptoma/efeitos dos fármacos , Transcriptoma/genética , Gencitabina , Neoplasias Pancreáticas
16.
Lab Invest ; 100(2): 250-264, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31417158

RESUMO

The ability of the aryl hydrocarbon receptor (AHR) to alter hepatic expression of cholesterol synthesis genes in a DRE-independent manner in mice and humans has been reported. We have examined the influence of functionally distinct classes of AHR ligands on the levels of Niemann-Pick C1-like intracellular cholesterol transporter (NPC1L1) and enzymes involved in the cholesterol synthesis pathway. NPC1L1 is known to mediate the intestinal absorption of dietary cholesterol and is clinically targeted. AHR ligands were capable of attenuating cholesterol uptake through repression of NPC1L1 expression. Through mutagenesis experiments targeting the two DRE sequences present in the promoter region of the NPC1L1 gene, we provide evidence that the repression does not require functional DRE sequences; while knockdown experiments demonstrated that this regulation is dependent on AHR and sterol-regulatory element-binding protein-2 (SREBP-2). Furthermore, upon ligand activation of AHR, the human intestinal Caco-2 cell line revealed coordinate repression of both mRNA and protein levels for a number of the cholesterol biosynthetic enzymes. Transcription of NPC1L1 and genes of the cholesterol synthesis pathway is predominantly regulated by SREBP-2, especially after treatment with a statin. Immunoblot analyses revealed a significant decrease in transcriptionally active SREBP-2 levels upon ligand treatment, whereas the precursor form of SREBP-2 was modestly increased by AHR activation. Mechanistic insights indicate that AHR induces proteolytic degradation of mature SREBP-2 in a calcium-dependent manner, which correlates with the AHR ligand-mediated upregulation of the transient receptor potential cation channel subfamily V member 6 (TRPV6) gene encoding for a membrane calcium channel. These observations emphasize a role for AHR in the systemic homeostatic regulation of cholesterol synthesis and absorption, indicating the potential use of this receptor as a target for the treatment of hyperlipidosis-associated metabolic diseases.


Assuntos
Colesterol/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Receptores de Hidrocarboneto Arílico/metabolismo , Proteína de Ligação a Elemento Regulador de Esterol 2/metabolismo , Células CACO-2 , Inibidores Enzimáticos , Regulação da Expressão Gênica/efeitos dos fármacos , Regulação da Expressão Gênica/genética , Inativação Gênica , Humanos , Regiões Promotoras Genéticas , Receptores de Hidrocarboneto Arílico/antagonistas & inibidores , Receptores de Hidrocarboneto Arílico/genética , Proteína de Ligação a Elemento Regulador de Esterol 2/genética
17.
Haematologica ; 105(3): 687-696, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31123028

RESUMO

Leukemic stem cells are multipotent, self-renewing, highly proliferative cells that can withstand drug treatments. Although currently available treatments potentially destroy blast cells, they fail to eradicate leukemic progenitor cells completely. Aldehyde dehydrogenase and STAT3 are frequently up-regulated in pre-leukemic stem cells as well as in acute myeloid leukemia (AML) expressing the CD34+CD38- phenotype. The Isatin analog, KS99 has shown anticancer activity against multiple myeloma which may, in part, be mediated by inhibition of Bruton's tyrosine kinase activation. Here we demonstrate that KS99 selectively targets leukemic stem cells with high aldehyde dehydrogenase activity and inhibits phosphorylation of STAT3. KS99 targeted cells co-expressing CD34, CD38, CD123, TIM-3, or CD96 immunophenotypes in AML, alone or in combination with the standard therapeutic agent cytarabine. AML with myelodysplastic-related changes was more sensitive than de novo AML with or without NPM1 mutation. KS99 treatment reduced the clonogenicity of primary human AML cells as compared to normal cord blood mononuclear cells. Downregulation of phosphorylated Bruton's tyrosine kinase, STAT3, and aldehyde dehydrogenase was observed, suggesting interaction with KS99 as predicted through docking. KS99 with or without cytarabine showed in vivo preclinical efficacy in human and mouse AML animal models and prolonged survival. KS99 was well tolerated with overall negligible adverse effects. In conclusion, KS99 inhibits aldehyde dehydrogenase and STAT3 activities and causes cell death of leukemic stem cells, but not normal hematopoietic stem and progenitor cells.


Assuntos
Isatina , Leucemia Mieloide Aguda , Animais , Antígenos CD34 , Citarabina , Subunidade alfa de Receptor de Interleucina-3 , Leucemia Mieloide Aguda/tratamento farmacológico , Camundongos , Células-Tronco Neoplásicas , Nucleofosmina
18.
Biochemistry ; 58(6): 561-574, 2019 02 12.
Artigo em Inglês | MEDLINE | ID: mdl-30570250

RESUMO

The nonbulky 5',8-cyclopurine DNA lesions (cP) and the bulky, benzo[ a]pyrene diol epoxide-derived stereoisomeric cis- and trans- N2-guanine adducts (BPDE-dG) are good substrates of the human nucleotide excision repair (NER) mechanism. These DNA lesions were embedded at the In or Out rotational settings near the dyad axis in nucleosome core particles reconstituted either with native histones extracted from HeLa cells (HeLa-NCP) or with recombinant histones (Rec-NCP). The cP lesions are completely resistant to NER in human HeLa cell extracts. The BPDE-dG adducts are also NER-resistant in Rec-NCPs but are good substrates of NER in HeLa-NCPs. The four BPDE-dG adduct samples are excised with different efficiencies in free DNA, but in HeLa-NCPs, the efficiencies are reduced by a common factor of 2.2 ± 0.2 relative to the NER efficiencies in free DNA. The NER response of the BPDE-dG adducts in HeLa-NCPs is not directly correlated with the observed differences in the thermodynamic destabilization of HeLa-NCPs, the Förster resonance energy transfer values, or hydroxyl radical footprint patterns and is weakly dependent on the rotational settings. These and other observations suggest that NER is initiated by the binding of the DNA damage-sensing NER factor XPC-RAD23B to a transiently opened BPDE-modified DNA sequence that corresponds to the known footprint of XPC-DNA-RAD23B complexes (≥30 bp). These observations are consistent with the hypothesis that post-translational modifications and the dimensions and properties of the DNA lesions are the major factors that have an impact on the dynamics and initiation of NER in nucleosomes.


Assuntos
Adutos de DNA/química , Dano ao DNA , Reparo do DNA , DNA/química , Nucleossomos/química , Purinas/química , Adutos de DNA/genética , Enzimas Reparadoras do DNA/metabolismo , Proteínas de Ligação a DNA/metabolismo , Células HeLa , Humanos , Nucleossomos/genética
19.
J Lipid Res ; 60(6): 1078-1086, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30962310

RESUMO

Acute myeloid leukemia (AML) is the most common acute leukemia in adults. More than half of older AML patients fail to respond to cytotoxic chemotherapy, and most responders relapse with drug-resistant disease. Failure to achieve complete remission can be partly attributed to the drug resistance advantage of AML blasts that frequently express P-glycoprotein (P-gp), an ATP-binding cassette transporter. Our previous work showed that elevated acid ceramidase (AC) levels in AML contribute to blast survival. Here, we investigated P-gp expression levels in AML relative to AC. Using parental HL-60 cells and drug-resistant derivatives as our model, we found that P-gp expression and efflux activity were highly upregulated in resistant derivatives. AC overexpression in HL-60 conferred resistance to the AML chemotherapeutic drugs, cytarabine, mitoxantrone, and daunorubicin, and was linked to P-gp upregulation. Furthermore, targeting AC through pharmacologic or genetic approaches decreased P-gp levels and increased sensitivity to chemotherapeutic drugs. Mechanistically, AC overexpression increased NF-κB activation whereas NF-kB inhibitors reduced P-gp levels, indicating that the NF-kappaB pathway contributes to AC-mediated modulation of P-gp expression. Hence, our data support an important role for AC in drug resistance as well as survival and suggest that sphingolipid targeting approaches may also impact drug resistance in AML.


Assuntos
Membro 1 da Subfamília B de Cassetes de Ligação de ATP/metabolismo , Ceramidase Ácida/metabolismo , Leucemia Mieloide Aguda/enzimologia , Leucemia Mieloide Aguda/metabolismo , NF-kappa B/metabolismo , Ceramidase Ácida/genética , Antineoplásicos/farmacologia , Western Blotting , Sobrevivência Celular/efeitos dos fármacos , Citarabina/farmacologia , Daunorrubicina/farmacologia , Resistencia a Medicamentos Antineoplásicos/genética , Citometria de Fluxo , Células HEK293 , Células HL-60 , Humanos , Técnicas In Vitro , Lentivirus/genética , Mitoxantrona/farmacologia , Reação em Cadeia da Polimerase em Tempo Real , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Espectrometria de Massas em Tandem
20.
J Proteome Res ; 18(4): 1715-1724, 2019 04 05.
Artigo em Inglês | MEDLINE | ID: mdl-30777439

RESUMO

The aryl hydrocarbon receptor (AHR) is a major regulator of immune function within the gastrointestinal tract. Resident microbiota are capable of influencing AHR-dependent signaling pathways via production of an array of bioactive molecules that act as AHR agonists, such as indole or indole-3-aldehyde. Bacteria produce a number of quinoline derivatives, of which some function as quorum-sensing molecules. Thus, we screened relevant hydroxyquinoline derivatives for AHR activity using AHR responsive reporter cell lines. 2,8-Dihydroxyquinoline (2,8-DHQ) was identified as a species-specific AHR agonist that exhibits full AHR agonist activity in human cell lines, but only induces modest AHR activity in mouse cells. Additional dihydroxylated quinolines tested failed to activate the human AHR. Nanomolar concentrations of 2,8-DHQ significantly induced CYP1A1 expression and, upon cotreatment with cytokines, synergistically induced IL6 expression. Ligand binding competition studies subsequently confirmed 2,8-DHQ to be a human AHR ligand. Several dihydroxyquinolines were detected in human fecal samples, with concentrations of 2,8-DHQ ranging between 0 and 3.4 pmol/mg feces. Additionally, in mice the microbiota was necessary for the presence of DHQ in cecal contents. These results suggest that microbiota-derived 2,8-DHQ would contribute to AHR activation in the human gut, and thus participate in the protective and homeostatic effects observed with gastrointestinal AHR activation.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos/agonistas , Microbioma Gastrointestinal/fisiologia , Oxiquinolina/análogos & derivados , Receptores de Hidrocarboneto Arílico/agonistas , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Células CACO-2 , Fezes/microbiologia , Humanos , Camundongos , Oxiquinolina/metabolismo , Oxiquinolina/farmacologia , Receptores de Hidrocarboneto Arílico/genética , Receptores de Hidrocarboneto Arílico/metabolismo , Triptofano/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA