Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
1.
J Environ Manage ; 285: 112204, 2021 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-33618138

RESUMO

This work aimed to assess the elimination and inactivation of resistance-conferring plasmids (RCPs) present in suspension in secondary wastewater by solar photo-Fenton as these are important vectors for the dissemination of antimicrobial resistance. Experiments were performed in synthetic secondary wastewater (SWW) and municipal wastewater treatment plant effluent (MWWTPE). Solar photo-Fenton (50 mg L-1 of H2O2 and 30 mg L-1 of Fe2+) was carried out for 60 min at neutral pH by applying the intermittent iron addition strategy. The removal of RCPs was assessed by Real-Time Polymerase Chain Reaction (qPCR). The transformation of competent non-resistant E. coli was used to evaluate the inactivation of target RCPs harboring antibiotic resistance genes (ARGs) to ampicillin (pSB1A2) or kanamycin (pSB1K3) after treatment and controls. Solar photo-Fenton completely removed RCPs initially present in both matrixes (SWW and MWWTPE), showing enhanced performance compared to the dark Fenton process. Both RCPs were inactivated after 30 min of solar photo-Fenton treatment, while 60 min were necessary to achieve the same effect for the dark Fenton reaction under similar conditions. These results indicate the potential of solar photo-Fenton to improve wastewater quality and reduce the spread of antimicrobial resistance in the environment by hampering the discharge of cell-free RCPs present in suspension in MWWTP onto environmental waters.


Assuntos
Águas Residuárias , Poluentes Químicos da Água , Antibacterianos , DNA , Farmacorresistência Bacteriana/genética , Escherichia coli/genética , Peróxido de Hidrogênio , Oxirredução , Plasmídeos/genética
2.
J Environ Manage ; 195(Pt 2): 110-116, 2017 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-27157699

RESUMO

In this study, a multistage treatment system was proposed to treat real pharmaceutical wastewater containing the antibiotic amoxicillin. Ozonation (O3), and ozonation combined with aerobic biodegradation, were performed. The real pharmaceutical wastewater presented a high concentration of organic matter (TOC: 803 mg C·L-1 and COD: 2775 mg O2·L-1), significant amoxicillin content (50 mg L-1) and acute ecotoxicity (Aliivibrio fischeri aTU: 48.22). Ozonation proved to be effective for amoxicillin degradation (up to 99%) and the results also indicated the removal of the original colour of the wastewater, with average consumption of 1 g of ozone. However, the ozonation system alone could not achieve complete mineralization. Therefore, a combination of ozonation and biodegradation in a multistage system was proposed in order to improve cost and treatment efficiency. The multistage treatment system presented promising results, achieving degradation of more than 99% of the amoxicillin, more than 98% of the original chemical oxygen demand (COD), and 90% of initial toxicity, with the consumption of approximately 500 mg of ozone. This indicates that this system could prevent dangerous and biorecalcitrant antibiotics from entering water resources.


Assuntos
Ozônio/química , Águas Residuárias/química , Antibacterianos/química , Biodegradação Ambiental , Eliminação de Resíduos Líquidos , Poluentes Químicos da Água/química , Purificação da Água
3.
J Environ Sci Health B ; 49(4): 263-70, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24502213

RESUMO

In this study, photocatalytic (photo-Fenton and H2O2/UV) and dark Fenton processes were used to remove ethylenethiourea (ETU) from water. The experiments were conducted in a photo-reactor with an 80 W mercury vapor lamp. The mineralization of ETU was determined by total organic carbon analysis, and ETU degradation was qualitatively monitored by the reduction of UV absorbance at 232 nm. A higher mineralization efficiency was obtained by using the photo-peroxidation process (UV/H2O2). Approximately 77% of ETU was mineralized within 120 min of the reaction using [H2O2]0 = 400 mg L(-1). The photo-Fenton process mineralized 70% of the ETU with [H2O2]0 = 800 mg L(-1) and [Fe(2+)] = 400 mg L(-1), and there is evidence that hydrogen peroxide was the limiting reagent in the reaction because it was rapidly consumed. Moreover, increasing the concentration of H2O2 from 800 mg L(-1) to 1200 mg L(-1) did not enhance the degradation of ETU. Kinetics studies revealed that the pseudo-second-order model best fit the experimental conditions. The k values for the UV/H2O2 and photo-Fenton processes were determined to be 6.2 × 10(-4) mg L(-1) min(-1) and 7.7 × 10(-4) mg L(-1) min(-1), respectively. The mineralization of ETU in the absence of hydrogen peroxide has led to the conclusion that ETU transformation products are susceptible to photolysis by UV light. These are promising results for further research. The processes that were investigated can be used to remove pesticide metabolites from drinking water sources and wastewater in developing countries.


Assuntos
Etilenotioureia/química , Praguicidas/química , Poluentes Químicos da Água/química , Cinética , Fotólise , Raios Ultravioleta , Purificação da Água
4.
Environ Sci Pollut Res Int ; 31(9): 13455-13470, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38253830

RESUMO

Hydroelectric power is the main source of electrical energy in Brazil. Electrical energy providers have the duty to monitor water quality in reservoirs to preserve water quality and support best management practices that enable multiple water uses, including fish production. In this context, the objectives of this study were (i) to perform a historical evaluation of water quality in Três Marias Reservoir, (ii) to present an optimization of the water quality monitoring network, and (iii) to evaluate the evolution and impact of fish farming upon surface water quality by using secondary data measured in situ and remote sensing. A systematic approach was applied to analyze historical water quality data. Principal component analysis (PCA) and cluster analysis (CA) were applied to identify the most important parameters and monitoring points. Images obtained from Sentinel 2 were treated by contrast to quantify simple and weighted densities of fish farming activities in the region while regression analysis was performed to verify correlations between these densities and water quality parameters. Results showed that the pH and total suspended solids were the most important parameters for characterizing water quality, especially near tributaries, and that monitoring points could be grouped into three clusters (upstream, central, and downstream regions) with distinct water quality conditions. The PCA indicated that there is no redundance among parameters nor monitoring stations and that areas near tributaries must be prioritized for monitoring as these are important sources of suspended solids. Remote sensing images showed that the area occupied by fish farms has increased in the reservoir from 2016 to 2022 and the methodology used for this purpose in this study may be applied to other bodies of water. Chlorophyll-a showed a direct relationship with the density of fish farms indicating a possible influence of nutrient input to the reservoir by this activity. These results provide valuable information to support decision-making related to water management in the reservoir.


Assuntos
Monitoramento Ambiental , Qualidade da Água , Monitoramento Ambiental/métodos , Brasil , Eutrofização , Pesqueiros
5.
Sci Total Environ ; 948: 174586, 2024 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-38997014

RESUMO

Per- and polyfluoroalkyl substances (PFAS) comprise >4000 synthetic substances used in industrial applications and consumer products. PFAS used daily in households and manufacturing plants end up in domestic sewage, and industrial effluents can be discharged to surface water. Urban watersheds located in low and middle-income countries (LMIC), which lack sanitation infrastructure, are potential recipients of waste containing PFAS. Yet, only a few studies report PFAS occurrence in urban reservoirs and lakes, especially those located in the Global South due to resource limitations. This is the first study aimed to assess PFAS occurrence and ecological risks in Pampulha Lake, Brazil, a site which represents the reality of many other urban watersheds in LMIC as it is surrounded by densely populated areas and manufacturing plants. Surface water samples were collected monthly for 1 year from four sampling points at Pampulha Lake. Sample analysis was based on US Environmental Protection Agency Method 1633, which employs solid phase extraction followed by liquid chromatography coupled to tandem mass spectrometry (LC-MS/MS). Species sensitivity distribution (SSD) curves were built to identify potentially susceptible species based on detected water concentrations. Bioaccumulation was estimated for fish tissue. Short-chain (perfluorobutanesulfonic acid, PFBS and perfluorohexanoic acid, PFHxA) and long-chain PFAS (perfluorodecanoic acid, PFDA; perfluorooctanoic acid, PFOA; perfluorododecanoic acid, PFDoA; and perfluorooctanesulfonic acid, PFOS) were detected at the µg L-1 range. Total PFAS concentrations in the wet season were generally higher than in the dry season, likely due to limited capacity of the treatment plant processing water from tributaries which receive raw sewage. More than 5 % of aquatic species are potentially susceptible to chronic effects of PFOS at detected concentrations (0.2-2.2 µg L-1). Predicted bioaccumulation of PFOS in fish was above advisory diet intake levels for humans. Results emphasize the need for studies related to PFAS occurrence in watersheds located in LMIC.

6.
Chemosphere ; 361: 142355, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38768787

RESUMO

As global effects of water scarcity raise concerns and environmental regulations evolve, contemporary wastewater treatment plants (WWTPs) face the challenge of effectively removing a diverse range of contaminants of emerging concern (CECs) from municipal effluents. This study focuses on the assessment of advanced oxidation processes (AOPs), specifically UV-C/H2O2 and UV-C/Chlorine, for the removal of 14 target CECs in municipal secondary effluent (MSE, spiked with 10 µg L-1 of each CEC) or in the subsequent MSE nanofiltration retentate (NFR, no spiking). Phototreatments were carried out in continuous mode operation, with a hydraulic retention time of 3.4 min, using a tube-in-tube membrane photoreactor. For both wastewater matrices, UV-C photolysis (3.3 kJ L-1) exhibited high efficacy in removing CECs susceptible to photolysis, although lower treatment performance was observed for NFR. In MSE, adding 10 mg L-1 of H2O2 or Cl2 enhanced treatment efficiency, with UV-C/H2O2 outperforming UV-C/Chlorine. Both UV-C/AOPs eliminated the chronic toxicity of MSE toward Chlorella vulgaris. In the NFR, not only was the degradation of target CECs diminished, but chronic toxicity to C. vulgaris persisted after both UV-C/AOPs, with UV-C/Chlorine increasing toxicity due to potential toxic by-products. Nanofiltration permeate (NFP) exhibited low CECs and microbial content. A single chlorine addition effectively controlled Escherichia coli regrowth for 3 days, proving NFP potential for safe reuse in crop irrigation (<1 CFU/100 mL for E. coli; <1 mg L-1 for free chlorine). These findings provide valuable insights into the applications and limitations of UV-C/H2O2 and UV-C/Chlorine for distinct wastewater treatment scenarios.


Assuntos
Cloro , Filtração , Peróxido de Hidrogênio , Fotólise , Raios Ultravioleta , Eliminação de Resíduos Líquidos , Águas Residuárias , Poluentes Químicos da Água , Peróxido de Hidrogênio/química , Águas Residuárias/química , Poluentes Químicos da Água/química , Poluentes Químicos da Água/análise , Eliminação de Resíduos Líquidos/métodos , Cloro/química , Filtração/métodos , Purificação da Água/métodos , Chlorella vulgaris/efeitos dos fármacos , Escherichia coli/efeitos dos fármacos , Oxirredução
7.
Chemosphere ; 352: 141444, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38346513

RESUMO

This study assessed the occurrence of five antibiotics, three hormones, caffeine, and long and short-chain perfluoroalkyl and polyfluoroalkyl substances (PFASs) in surface water and feedstuff samples obtained from aquaculture cages in Três Marias reservoir in Brazil. This is the first work to evaluate the presence of PFAS in surface water used for aquaculture in Brazil. Solid-phase extraction and low temperature partitioning extraction followed by liquid chromatography coupled to mass spectrometry (LC-MS) were performed to process and analyze surface water samples and feedstuff, respectively. The ecotoxicological risk quotient was calculated for target compounds detected in water. Ciprofloxacin and caffeine were detected in all surface water samples. Pharmaceutical drugs ranged from 0.7 ng L-1 (trimethoprim) to 389.2 ng L -1 (ß-estradiol). Estrone (10.24 ng g-1) and ß-estradiol (66.20 ng g-1) were also found in feedstuff. Four PFASs (PFOA, PFDoA, PFTeDA, and PFBS) were detected (9.40-15.2 µg L-1) at levels higher than reported in studies conducted worldwide. Ecotoxicological risk assessment indicated high risks for caffeine and PFOA, PFDoA, and PFTeDA with RQ values from 10 to 103. These findings reveal risks to biodiversity, ecosystem integrity and human health considering possible intake of these contaminants by fish consumption due to potential bioaccumulation of these substances. Hence, it is critical to conduct more studies in this direction in Brazil and other low and middle-low-income countries.


Assuntos
Ácidos Alcanossulfônicos , Ciclídeos , Fluorocarbonos , Poluentes Químicos da Água , Humanos , Animais , Água/análise , Brasil , Monitoramento Ambiental , Antibacterianos/análise , Ácidos Alcanossulfônicos/análise , Cafeína/análise , Ecossistema , Estradiol/análise , Poluentes Químicos da Água/análise , Fluorocarbonos/análise
8.
J Environ Sci Health B ; 48(3): 183-90, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23356339

RESUMO

This study evaluated the adsorption capacity of ethylenthiourea (ETU) and 1H-1,2,4-triazole (1,2,4-T) for two commercial activated carbons: charcoal-powdered activated carbon (CPAC) and bovine bone-powdered activated carbon (BPAC). The tests were conducted at a bench scale, with ETU and 1,2,4-T diluted in water, for isotherm and adsorption kinetic studies. The removal of the compounds was accompanied by a total organic carbon (TOC) analysis and ultraviolet (UV) reduction analysis. The coals were characterized by their surface area using nitrogen adsorption/desorption, by a scanning electron microscopy and energy-dispersive X-ray spectroscopy (SEM/EDS) and by a zero charge point analysis (pHpcz). The results showed that adsorption kinetics followed a pseudo-second-order model for both coals, and the adsorption isotherms for CPAC and BPAC were adjusted to the Langmuir and Freundlich isotherms, respectively. The CPAC removed approximately 77% of the ETU and 76% of the 1,2,4-T. The BPAC was ineffective at removing the contaminants.


Assuntos
Carvão Vegetal/química , Recuperação e Remediação Ambiental/métodos , Praguicidas/química , Triazóis/química , Poluentes Químicos da Água/química , Adsorção , Animais , Bovinos , Recuperação e Remediação Ambiental/instrumentação , Cinética
9.
Sci Total Environ ; 902: 165964, 2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-37541505

RESUMO

Monitoring water quality in reservoirs is essential for the maintenance of aquatic ecosystems and socioeconomic services. In this scenario, the observation of abrupt elevations of physicochemical parameters, such as turbidity and other indicators, can signal anomalies associated with the occurrence of critical events, requiring operational actions and planning to mitigate negative environmental impacts on water resources. This work aims to integrate Machine Learning methods specialized in anomaly detection with data obtained from remote sensing images to identify with high turbidity events in the surface water of the Três Marias Hydroelectric Reservoir. Four distinct threshold-based scenarios were evaluated, in which the overall performance, based on F1-score, showed decreasing trends as the thresholds became more restrictive. In general, the anomaly identification maps generated through the models ratified the applicability of the methods in the diagnosis of surface water in reservoirs in distinct hydrological contexts (dry and wet), effectively identifying locations with anomalous turbidity values.

10.
Sci Total Environ ; 850: 157940, 2022 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-35952890

RESUMO

The application of solar photo-Fenton as post-treatment of municipal secondary effluents (MSE) in developing tropical countries is the main topic of this review. Alternative technologies such as stabilization ponds and upflow anaerobic sludge blanket (UASB) are vastly applied in these countries. However, data related to the application of solar photo-Fenton to improve the quality of effluents from UASB systems are scarce. This review gathered main achievements and limitations associated to the application of solar photo-Fenton at neutral pH and at pilot scale to analyze possible challenges associated to its application as post-treatment of MSE generated by alternative treatments. To this end, the literature review considered studies published in the last decade focusing on CECs removal, toxicity reduction and disinfection via solar photo-Fenton. Physicochemical characteristics of effluents originated after UASB systems alone and followed by a biological post-treatment show significant difference when compared with effluents from conventional activated sludge (CAS) systems. Results obtained for solar photo-Fenton as post-treatment of MSE in developed countries indicate that remaining organic matter and alkalinity present in UASB effluents may pose challenges to the performance of solar advanced oxidation processes (AOPs). This drawback could result in a more toxic effluent. The use of chelating agents such as Fe3+-EDDS to perform solar photo-Fenton at neutral pH was compared to the application of intermittent additions of Fe2+ and both of these strategies were reported as effective to remove CECs from MSE. The latter strategy may be of greater interest in developing countries due to costs associated to complexing agents. In addition, more studies are needed to confirm the efficiency of solar photo-Fenton on the disinfection of effluent from UASB systems to verify reuse possibilities. Finally, future research urges to evaluate the efficiency of solar photo-Fenton at natural pH for the treatment of effluents from UASB systems.


Assuntos
Águas Residuárias , Poluentes Químicos da Água , Quelantes , Desinfecção/métodos , Peróxido de Hidrogênio , Ferro , Oxirredução , Esgotos , Poluentes Químicos da Água/análise
11.
Sci Total Environ ; 836: 155605, 2022 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-35504382

RESUMO

This work presents data regarding the occurrence and treatment of Contaminants of Emerging Concern (CECs) in Brazil in the past decade. The literature review (2011-2021) revealed the detection of 87 pharmaceutical drugs and personal care products, 58 pesticides, 8 hormones, 2 illicit drugs, caffeine and bisphenol A in distinct matrices (i.e.: wastewater, groundwater, sea water, rainwater, surface water, drinking water and hospital effluent). Concentrations of CECs varied from ng-µg L-1 depending on the location, compound and matrix. The inefficiency of conventional wastewater treatment methods on the removal of CECs and lack of basic sanitation in some regions in the country aggravates contamination of Brazilian aquatic environments and poses potential environmental and health risks. Advanced oxidation processes (AOPs) are pointed out as viable and efficient alternatives to degrade CECs and prevent environmental contamination. A total of 375 studies involving the use of AOPs in Brazilian aqueous matrices were published in the last decade. Fenton and photo-Fenton processes, photo-peroxidation, ozonation, electrochemical advanced oxidation and heterogeneous photocatalysis are some of the AOPs applied by Brazilian research groups. Although many works discuss the importance of applying these technologies for CECs removal in real treatment plants, most of these studies assess the treatment of distilled water or simulated effluent. Therefore, the conduction of studies applying AOPs in real matrices are critical to drive the implementation of these processes coupled to conventional water and wastewater treatment in real plants in order to prevent the contamination of environmental matrices by CECs in Brazil.


Assuntos
Poluentes Químicos da Água , Purificação da Água , Brasil , Águas Residuárias/química , Água , Poluentes Químicos da Água/análise , Purificação da Água/métodos
12.
Environ Sci Pollut Res Int ; 28(19): 24092-24111, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33447977

RESUMO

This work presents a bibliographic review of the literature regarding the simultaneous removal of contaminants of emerging concern (CECs) and disinfection in domestic wastewater matrices. These two responses are usually evaluated independently, as most attention has been centered on the discussion over the removal of CECs in the last 10 years. However, the simultaneous removal of CECs and pathogens from wastewater has been recently brought to the spotlight, especially considering the removal of antibiotics and antibiotic-resistant bacteria. Aiming at a reproducible and nonbiased methodology, a combination of the construction of a bibliometric portfolio with systemic analysis was performed with peer-reviewed manuscripts published between 2008 and 2019 in five distinct databases. Several keyword combinations were necessary to achieve a relevant portfolio according to strict criteria. As a result, five highly cited papers and authors were selected. Among the advanced oxidation processes (AOPs) explored for simultaneous removal of CECs and disinfection in these papers, detailed results have been elucidated mainly for ozonation. Thus, revealing the broad range of questions that have yet to be investigated in depth for new technologies such as irradiated solar processes. In addition, there is a lack of information associated with simultaneous assessment of CEC removal and disinfection in real samples and in wastewater matrices originated from different secondary treatment technologies in diverse locations.


Assuntos
Poluentes Químicos da Água , Purificação da Água , Desinfecção , Peróxido de Hidrogênio , Melhoria de Qualidade , Águas Residuárias , Poluentes Químicos da Água/análise
13.
Environ Sci Pollut Res Int ; 28(14): 17355-17368, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33398751

RESUMO

This work investigated an innovative alternative to improve municipal wastewater treatment plant effluent (MWWTP effluent) quality aiming at the removal of contaminants of emerging concern (caffeine, carbendazim, and losartan potassium), and antibiotic-resistant bacteria (ARB), as well as disinfection (E. coli). Persulfate was used as an alternative oxidant in the solar photo-Fenton process (solar/Fe/S2O82-) due to its greater stability in the presence of matrix components. The efficiency of solar/Fe/S2O82- at neutral pH using intermittent iron additions is unprecedented in the literature. At first, solar/Fe/S2O82- was performed in a solar simulator (30 W m-2) leading to more than 60% removal of CECs, and the intermittent iron addition strategy was proved effective. Then, solar/Fe/S2O82- and solar/Fe/H2O2 were compared in semi-pilot scale in a raceway pond reactor (RPR) and a cost analysis was performed. Solar/Fe/S2O82- showed higher efficiencies of removal of target CECs (55%), E. coli (3 log units), and ARB (3 to 4 log units) within 1.9 kJ L-1 of accumulated irradiation compared to solar/Fe/H2O2 (CECs, 49%; E. coli, 2 log units; ARB, 1 to 3 log units in 2.5 kJ L-1). None of the treatments generated acute toxicity upon Allivibrio fischeri. Lower total cost was obtained using S2O82- (0.6 € m-3) compared to H2O2 (1.2 € m-3). Therefore, the iron intermittent addition aligned to the use of persulfate is suitable for MWWTP effluent quality improvement at neutral pH.


Assuntos
Poluentes Químicos da Água , Purificação da Água , Antagonistas de Receptores de Angiotensina , Inibidores da Enzima Conversora de Angiotensina , Antibacterianos , Desinfecção , Escherichia coli , Peróxido de Hidrogênio , Concentração de Íons de Hidrogênio , Águas Residuárias , Poluentes Químicos da Água/análise
14.
Sci Total Environ ; 786: 147448, 2021 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-33965817

RESUMO

This review aims to gather main achievements and limitations associated to the application of solar photocatalytic processes with regard to the removal of antibiotic resistant bacteria (ARB) and antibiotic resistance genes (ARGs) from municipal wastewater treatment plant effluent (MWWTPE). Solar photocatalytic processes were chosen considering the context of developing tropical countries. Among these processes, solar photo-Fenton has been proved effective for the elimination of ARB from MWWTPE at neutral pH in bench and pilot scale and also under continuous flow. Yet, ARG removal varies as according to the gene. Irradiation intensity and matrix composition play a key role on treatment efficiency for this purpose. The use of sulfate radical in modified solar photo-Fenton is still incipient for ARB and ARG removal. Also, investigations related to ARB resistance profile and horizontal gene transfer rates after solar photo-Fenton treatment must be further analyzed. Regarding solar heterogeneous photocatalysis, TiO2 and TiO2-composites applied in suspension are the most commonly investigated for the removal of ARB and ARGs. Irradiation intensity, temperature and catalyst dosage affect treatment efficiency. However, most studies were performed in synthetic solutions using reduced sample volumes. Extended exposition times and addition of H2O2 to the system (solar/TiO2/H2O2) are required to prevent bacteria regrowth and ensure ARG abatement. In addition, enhancement of TiO2 with graphene or (semi)metals improved ARB elimination. Differences concerning irradiation intensity, matrix composition, catalyst dosage, and model ARB and ARGs used in studies analyzed in this review hinder the comparison of photocatalysts synthesized by various research groups. Finally, future research should aim at evaluating the efficiency of solar photocatalytic processes in real matrices originated from sewage treatment systems applied in developing countries; determining indicators of antimicrobial resistance in MWWTPE; and investigating ARB mutation rate as well as the removal of cell-free ARGs present in suspension in MWWTPE.


Assuntos
Antibacterianos , Purificação da Água , Antagonistas de Receptores de Angiotensina , Inibidores da Enzima Conversora de Angiotensina , Antibacterianos/farmacologia , Farmacorresistência Bacteriana , Peróxido de Hidrogênio , Águas Residuárias
15.
Sci Total Environ ; 755(Pt 2): 142624, 2021 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-33045600

RESUMO

This work proposes the evaluation of an aluminized surface on the bottom of open reactors to perform a photo-Fenton process, at circumneutral pH (using Fe III-Ethylenediamine-N,N'-disuccinic acid complex), for elimination of micropollutants (MPs) in real effluents from municipal wastewater treatment plants (EMWWTP). Firstly, the strategy was to initially investigate the real EMWWTP spiked with several MPs (acetaminophen, diclofenac, carbamazepine, caffeine, trimethoprim and sulfamethoxazole) with 20 and 100 µg L-1 in a laboratory scale (evaluated by HPLC-UV) using a solar simulator. Finally, the removal of all MCs present in the real EMWWTP was monitored (evaluated by HPLC-MS) in a pilot-scale (90 L) in a raceway pond reactor (RPR). The treatment time required for degradation above 80% for the investigated MPs was over 30 min, and the predominant effect could be mainly associated with organics present in the real EMWWTP due to the light attenuation and scavenging of radical species. Moreover, the results confirmed that chloride and sulfate would most likely equally not affect the process. The use of an aluminized surface on the bottom of RPRs has been confirmed as a suitable option to improve the photo-Fenton reaction, enabling the use of lower doses of iron. Up to 60 different MPs found in EMWWTP have been successfully degraded using 0.1 mM of Fe at circumneutral pH with a consumption of 30 mg L-1 H2O2 with less than 45 min.

16.
Environ Sci Pollut Res Int ; 28(19): 24067-24078, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33439442

RESUMO

The goal of this work was to evaluate the performance of the LED irradiated photo-Fenton process on the removal of (i) estrogenic activity and (ii) seven endocrine disruptors (EDs) (4-octylphenol, 4-nonylphenol, bisphenol A, estrone, 17ß-estradiol, 17α-ethinylestradiol, and estriol) from real wastewater treatment plant effluent (WWTPE). EDs are a group of contaminants of emerging concern present in WWTPE and which may be recognized by hormone receptors, thus harming animal and human health. The yeast estrogenic screen test (YES) was used to quantify estrogenic activity promoted by EDs in WWTPE samples before and after photo-Fenton treatment. Tests were performed following a factorial design with different iron (20, 40, and 60 mg L-1) and hydrogen peroxide (100, 200, and 300 mg L-1) concentrations in a laboratory scale LED photoreactor (λ = 455 nm, 1.5 L, 1.6 × 10-6 Einstein s-1). EDs were analyzed by gas chromatography coupled to a mass spectrometer. Control experiments consisted of Fenton process, iron only, LED irradiation only, and H2O2 only. Optimum experimental conditions for LED photo-Fenton resulted in 62% removal of estrogenic activity and 59% mineralization. In addition, treated WWTPE was not toxic to Aliivibrio fischeri and more than 80% of EDs were removed during LED irradiated photo-Fenton. Although Fenton process showed similar efficiency to that obtained by LED photo-Fenton, a higher volume of sludge was generated in the dark. Finally, results obtained in this study confirm the applicability of LED irradiated photo-Fenton process for improving the quality of WWTPE as an alternative to solar photo-Fenton in case solar radiation is not available, thus reducing hazards associated to WWTPE reuse or discharge.


Assuntos
Disruptores Endócrinos , Poluentes Químicos da Água , Purificação da Água , Estrona , Humanos , Peróxido de Hidrogênio , Oxirredução , Eliminação de Resíduos Líquidos , Poluentes Químicos da Água/análise
17.
Sci Total Environ ; 801: 149599, 2021 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-34467925

RESUMO

The effectiveness of advanced technologies on eliminating antibiotic resistant bacteria (ARB) and resistance genes (ARGs) from wastewaters have been recently investigated. Solar photo-Fenton has been proven effective in combating ARB and ARGs from Municipal Wastewater Treatment Plant effluent (MWWTPE). However, most of these studies have relied solely on cultivable methods to assess ARB removal. This is the first study to investigate the effect of solar photo-Fenton upon ARB and ARGs in MWWTPE by high throughput metagenomic analysis (16S rDNA sequencing and Whole Genome Sequencing). Treatment efficiency upon priority pathogens and resistome profile were also investigated. Solar photo-Fenton (30 mg L-1 of Fe2+ intermittent additions and 50 mg L-1 of H2O2) reached 76-86% removal of main phyla present in MWWTPE. An increase in Proteobacteria abundance was observed after solar photo-Fenton and controls in which H2O2 was present as an oxidant (Fenton, H2O2 only, solar/H2O2). Hence, tolerance mechanisms presented by this group should be further assessed. Solar photo-Fenton achieved complete removal of high priority Staphylococcus and Enterococcus, as well as Klebsiella pneumoniae and Pseudomonas aeruginosa. Substantial reduction of intrinsically multi-drug resistant bacteria was detected. Solar photo-Fenton removed nearly 60% of ARGs associated with sulfonamides, macrolides, and tetracyclines, and complete removal of ARGs related to ß-lactams and fluoroquinolones. These results indicate the potential of using solar-enhanced photo-Fenton to limit the spread of antimicrobial resistance, especially in developing tropical countries.


Assuntos
Peróxido de Hidrogênio , Microbiota , Antagonistas de Receptores de Angiotensina , Inibidores da Enzima Conversora de Angiotensina , Antibacterianos/farmacologia , Resistência Microbiana a Medicamentos/genética , Concentração de Íons de Hidrogênio , Águas Residuárias
18.
Environ Sci Pollut Res Int ; 26(5): 4155-4170, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30238261

RESUMO

A range of different studies has been performed in order to design and develop photocatalysts that work efficiently under visible (and near-infrared) irradiation as well as to improve photons absorption with improved reactor design. While there is consensus on the importance of photocatalysis for environmental applications and the necessity to utilized solar irradiation (or visible-light) as driving force for these processes, it is not yet clear how to get there. Discussion on the future steps towards visible-light photocatalysis for environmental application is of great interest to scientific and industrial communities and the present paper reviews and discusses the two main approaches, band-gap engineering for efficient solar-activated catalysts and reactor designs for improved photons absorption. Common misconceptions and drawbacks of each technology are also examined together with insights for future progress.


Assuntos
Engenharia/métodos , Poluição Ambiental/prevenção & controle , Luz , Fótons , Carbono/química , Catálise , Semicondutores , Titânio/química
19.
J Hazard Mater ; 372: 17-36, 2019 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-29728279

RESUMO

This is the first review to present data obtained in Brazil over the years regarding contaminants of emerging concern (CEC) and to contrast it with contamination in other countries. Data gathered indicated that caffeine, paracetamol, atenolol, ibuprofen, cephalexin and bisphenol A occur in the µg L-1 range in streams near urban areas. While endocrine disruptors are frequently detected in surface waters, highest concentrations account for 17α-ethynylestradiol and 17ß-estradiol. Organochlorine pesticides are the most frequently found and persistent in sediments in agricultural regions. Moreover, in tropical agricultural fields, pesticide volatilization and its implications to ecosystem protection must be better investigated. The reality represented here for Brazil may be transposed to other developing countries due to similarities related to primitive basic sanitation infrastructure and economic and social contexts, which contribute to continuous environmental contamination by CEC. Municipal wastewater treatment facilities in Brazil, treat up to the secondary stage and lead to limited CEC removal. This is also true for other nations in Latin America, such as Argentina, Colombia and Mexico. Therefore, it is an urgent priority to improve sanitation infrastructure and, then, the implementation of tertiary treatment shall be imposed.

20.
Environ Sci Pollut Res Int ; 26(5): 4498-4509, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-29943251

RESUMO

Ethylenethiourea (ETU) is a toxic degradation product of one class of fungicide which is largely employed in the world, the ethylenebisdithiocarbamates. In this study, ETU was degraded by ozonation enhanced by UV-C light irradiation (O3/UV-C) in aqueous medium. Degradation experiments were conducted at natural pH (6.8) and neutral pH (7.0, buffered). ETU was promptly eliminated from the reactive medium during ozonation in the presence and absence of light. Within the first few minutes of reaction conducted in natural pH, the pH decreased quickly from 6.8 to 3.0. Results show that ETU mineralization occurs only in the reaction conducted in neutral pH and that it takes place in a higher rate when enhanced by UV-C irradiation. Main intermediates formed during the O3/UV-C experiments in different conditions tested were also investigated and three different degradation mechanisms were proposed considering the occurrence of direct and indirect ozone reactions. At pH 7, ethylene urea (EU) was quickly generated and degraded. Meanwhile, at natural pH, besides EU, other compounds originated from the electrophilic attack of ozone to the sulfur atom present in the contaminant molecule were also identified during reaction and EU was detected within 60 min of reaction. Results showed that ozonation enhanced by UV-C promotes a faster reaction than the same system in the absence of light, and investigation of the toxicity is recommended.


Assuntos
Etilenotioureia/química , Ozônio/química , Poluentes Químicos da Água/química , Cromatografia Líquida de Alta Pressão/métodos , Fungicidas Industriais/química , Concentração de Íons de Hidrogênio , Imidazolidinas/química , Espectrometria de Massas/métodos , Oxirredução , Raios Ultravioleta , Água/química , Purificação da Água/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA