RESUMO
An organic mixed valence compound with a spacer length of 25 unsaturated bonds separating two amine redox centres was synthesised and the electron transfer behaviour was investigated in the context of a Mulliken-Hush analysis in order to estimate the longest redox centre separation for which an intervalence charge transfer band can be observed.
RESUMO
A series of [2.2]paracylophane-bridged bis-triarylamine mixed-valence (MV) radical cations were analyzed by a generalized Mulliken-Hush (GMH) three-level model which takes two transitions into account: the intervalence charge transfer (IV-CT) band which is assigned to an optically induced hole transfer (HT) from one triarylamine unit to the second one and a second band associated with a triarylamine radical cation to bridge (in particular, the [2.2]paracyclophane bridge) hole transfer. From the GMH analysis, we conclude that the [2.2]paracyclophane moiety is not the limiting factor which governs the intramolecular charge transfer. AM1-CISD calculations reveal that both through-bond as well as through-space interactions of the [2.2]paracyclophane bridge play an important role for hole transfer processes. These electronic interactions are of course smaller than direct pi-conjugation, but from the order of magnitude of the couplings of the [2.2]paracyclophane MV species, we assume that this bridge is able to mediate significant through-space and through-bond interactions and that the cyclophane bridge acts more like an unsaturated spacer rather than a saturated one. From the exponential dependence of the electronic coupling V between the two triarylamine localized states on the distance r between the two redox centers, we infer that the hole transfer occurs via a superexchange mechanism. Our analysis reveals that even significantly longer pi-conjugated bridges should still mediate significant electronic interactions because the decay constant beta of a series of pi-conjugated MV species is small.
RESUMO
In this paper, we present the absorption properties of a series of bis-triarylamino-[2.2]paracyclophane diradical dications. The localized pi-pi and the charge-transfer (CT) transitions of these dications are explained and analyzed by an exciton coupling model that also considers the photophysical properties of the "monomeric" triarylamine radical cations. Together with AM1-CISD-calculated transition moments, experimental transition moments and transition energies of the bis-triarylamine dications were used to calculate electronic couplings by a generalized Mulliken-Hush (GMH) approach. These couplings are a measure for interactions of the excited mixed-valence CT states. The modification of the diabatic states reveals similarities of the GMH three-level model and the exciton coupling model. Comparison of the two models shows that the transition moment between the excited mixed-valence states mu(ab) of the dimer equals the dipole moment difference Delta of the ground and the excited bridge state of the corresponding monomer.
RESUMO
We investigated the spectroscopic properties of a series of four bistriarylamine donor-pi-bridge-donor D-pi-D compounds (dimers), composed of two asymmetric triarylamine chromophores (monomers). UV/vis, fluorescence, and transient absorption spectra were recorded and compared with those of the corresponding D-pi monomers. Bilinear Lippert-Mataga plots indicate a major molecular reorganization of the excited state in polar media for all compounds. The excited states of the dimers are described as mixed-valence states that show, depending on the chemical nature of the pi bridge, a varying amount of interactions (couplings). We found that superradiant emission, that is, an enhancement of the fluorescence rate in the dimer, is observed only in the case of weak and medium coupling. Whether the first excited-state potential energy surface of the dimers is described by single minimum or a double minimum potential depends on the solvent polarity and the electronic coupling. In the latter case, the dimer relaxes in a symmetry broken CT state with partial positive charge at the triarylamine donor and negative charge at the pi bridge. The [2.2]paracyclophane bridged dimer is an example of a weakly coupled system because the spectroscopic behavior is very similar to the corresponding p-xylene monomer. In contrast, anthracene as well as p-xylene bridges mediate a stronger coupling and reveal a significant cooperative influence on the optical properties.
RESUMO
We have investigated three organic mixed-valence systems that possess nearly identical inter-redox site distances and differ by the nature of the bridging units benzene, naphthalene, and anthracene: the N,N,N',N'-tetra(4-methoxyphenyl)-1,4-phenylenene-diamine radical cation (1+), the 1,4-bis(N,N-di(4-methoxyphenyl)-amino)naphthalene radical cation (2+), and the 9,10-bis(N,N-di(4-methoxyphenyl)amino)anthracene radical cation (3+). The electronic interactions in these systems have been studied by means of gas-phase ultraviolet photoelectron spectroscopy, vis/NIR spectroscopy, and electronic-structure calculations. The experimental and theoretical results concur to indicate that the strength of electronic interaction decreases in the following order of bridging units: benzene > naphthalene > anthracene. This finding contradicts the usual expectation that anthracene is superior to benzene as a driving force for electronic communication. We explain these results in terms of a super-exchange mechanism and its strong dependence on steric interactions.
RESUMO
Thianthrenophane 1 has a cavity which offers enough room to potentially enable endohedral coordination to small ions or molecules. For the complexation of silver(I) perchlorate the complex stability constants of 1 logK1=5.45 +/- 0.13 and of thianthrene logK2=9.16 +/- 0.10 were determined by UV/Vis titration. Single competition transport experiments with ten metal salts demonstrate a very high selectivity of 1 as a carrier for silver(I) and a distinctly higher transport rate compared to carriers such as thianthrene and 1,4,8,11-tetrathiacyclotetradecane (14-ane-S4). Although the X-ray crystal structure analysis of the polymeric [Ag(1)]ClO4.(dioxane)7 complex shows an exohedral coordination to silver(I) we suggest that the formation of an endohedral [Ag(1)]+ complex is the explanation for the unusual carrier selectivity of silver(I) by 1 in bulk liquid membrane.
RESUMO
The electronic and molecular structure of N,N,N',N'-tetraphenylphenylenediamine radical cation 1(+) is in focus of this study. Resonance Raman experiments showed that at least eight vibrational modes are strongly coupled to the optical charge resonance band which is seen in the NIR. With the help of a DFT-based vibrational analysis, these eight modes were assigned to symmetric vibrations. The contribution of these symmetric modes to the total vibrational reorganization energy is dominant. These findings are in agreement with the conclusions from a simple two-state two-mode Marcus-Hush analysis which yields a tiny electron-transfer barrier. The excellent agreement of the X-ray crystal structure analysis and the DFT computed molecular structure of 1(+) on one hand as well as the solvent and solid-state IR spectra and the DFT-calculated IR active vibrations on the other hand prove 1(+) adopts a symmetrical delocalized Robin-Day class III structure both in the solid state and in solution.