Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
1.
Int J Mol Sci ; 19(4)2018 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-29596363

RESUMO

Protein-protein interactions (PPI) are key to protein functions and regulations within the cell cycle, DNA replication, and cellular signaling. Therefore, detecting whether a pair of proteins interact is of great importance for the study of molecular biology. As researchers have become aware of the importance of computational methods in predicting PPIs, many techniques have been developed for performing this task computationally. However, there are few technologies that really meet the needs of their users. In this paper, we develop a novel and efficient sequence-based method for predicting PPIs. The evolutionary features are extracted from the position-specific scoring matrix (PSSM) of protein. The features are then fed into a robust relevance vector machine (RVM) classifier to distinguish between the interacting and non-interacting protein pairs. In order to verify the performance of our method, five-fold cross-validation tests are performed on the Saccharomyces cerevisiae dataset. A high accuracy of 94.56%, with 94.79% sensitivity at 94.36% precision, was obtained. The experimental results illustrated that the proposed approach can extract the most significant features from each protein sequence and can be a bright and meaningful tool for the research of proteomics.


Assuntos
Bases de Dados de Proteínas , Modelos Genéticos , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Software , Máquina de Vetores de Suporte , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
2.
J Theor Biol ; 432: 80-86, 2017 11 07.
Artigo em Inglês | MEDLINE | ID: mdl-28802824

RESUMO

It is a challenging task for fundamental research whether proteins can interact with their partners. Protein self-interaction (SIP) is a special case of PPIs, which plays a key role in the regulation of cellular functions. Due to the limitations of experimental self-interaction identification, it is very important to develop an effective biological tool for predicting SIPs based on protein sequences. In the study, we developed a novel computational method called RVM-AB that combines the Relevance Vector Machine (RVM) model and Average Blocks (AB) for detecting SIPs from protein sequences. Firstly, Average Blocks (AB) feature extraction method is employed to represent protein sequences on a Position Specific Scoring Matrix (PSSM). Secondly, Principal Component Analysis (PCA) method is used to reduce the dimension of AB vector for reducing the influence of noise. Then, by employing the Relevance Vector Machine (RVM) algorithm, the performance of RVM-AB is assessed and compared with the state-of-the-art support vector machine (SVM) classifier and other exiting methods on yeast and human datasets respectively. Using the fivefold test experiment, RVM-AB model achieved very high accuracies of 93.01% and 97.72% on yeast and human datasets respectively, which are significantly better than the method based on SVM classifier and other previous methods. The experimental results proved that the RVM-AB prediction model is efficient and robust. It can be an automatic decision support tool for detecting SIPs. For facilitating extensive studies for future proteomics research, the RVMAB server is freely available for academic use at http://219.219.62.123:8888/SIP_AB.


Assuntos
Algoritmos , Matrizes de Pontuação de Posição Específica , Mapeamento de Interação de Proteínas , Humanos , Ligação Proteica , Curva ROC , Reprodutibilidade dos Testes , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Máquina de Vetores de Suporte
3.
Molecules ; 22(7)2017 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-28678206

RESUMO

Knowledge of drug-target interaction (DTI) plays an important role in discovering new drug candidates. Unfortunately, there are unavoidable shortcomings; including the time-consuming and expensive nature of the experimental method to predict DTI. Therefore, it motivates us to develop an effective computational method to predict DTI based on protein sequence. In the paper, we proposed a novel computational approach based on protein sequence, namely PDTPS (Predicting Drug Targets with Protein Sequence) to predict DTI. The PDTPS method combines Bi-gram probabilities (BIGP), Position Specific Scoring Matrix (PSSM), and Principal Component Analysis (PCA) with Relevance Vector Machine (RVM). In order to evaluate the prediction capacity of the PDTPS, the experiment was carried out on enzyme, ion channel, GPCR, and nuclear receptor datasets by using five-fold cross-validation tests. The proposed PDTPS method achieved average accuracy of 97.73%, 93.12%, 86.78%, and 87.78% on enzyme, ion channel, GPCR and nuclear receptor datasets, respectively. The experimental results showed that our method has good prediction performance. Furthermore, in order to further evaluate the prediction performance of the proposed PDTPS method, we compared it with the state-of-the-art support vector machine (SVM) classifier on enzyme and ion channel datasets, and other exiting methods on four datasets. The promising comparison results further demonstrate that the efficiency and robust of the proposed PDTPS method. This makes it a useful tool and suitable for predicting DTI, as well as other bioinformatics tasks.


Assuntos
Biologia Computacional/métodos , Preparações Farmacêuticas/química , Proteínas/genética , Sequência de Aminoácidos , Bases de Dados de Proteínas , Interações Medicamentosas , Estrutura Molecular , Matrizes de Pontuação de Posição Específica , Análise de Componente Principal , Proteínas/metabolismo , Máquina de Vetores de Suporte
4.
Int J Mol Sci ; 17(5)2016 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-27213337

RESUMO

Protein-Protein Interactions (PPIs) play essential roles in most cellular processes. Knowledge of PPIs is becoming increasingly more important, which has prompted the development of technologies that are capable of discovering large-scale PPIs. Although many high-throughput biological technologies have been proposed to detect PPIs, there are unavoidable shortcomings, including cost, time intensity, and inherently high false positive and false negative rates. For the sake of these reasons, in silico methods are attracting much attention due to their good performances in predicting PPIs. In this paper, we propose a novel computational method known as RVM-AB that combines the Relevance Vector Machine (RVM) model and Average Blocks (AB) to predict PPIs from protein sequences. The main improvements are the results of representing protein sequences using the AB feature representation on a Position Specific Scoring Matrix (PSSM), reducing the influence of noise using a Principal Component Analysis (PCA), and using a Relevance Vector Machine (RVM) based classifier. We performed five-fold cross-validation experiments on yeast and Helicobacter pylori datasets, and achieved very high accuracies of 92.98% and 95.58% respectively, which is significantly better than previous works. In addition, we also obtained good prediction accuracies of 88.31%, 89.46%, 91.08%, 91.55%, and 94.81% on other five independent datasets C. elegans, M. musculus, H. sapiens, H. pylori, and E. coli for cross-species prediction. To further evaluate the proposed method, we compare it with the state-of-the-art support vector machine (SVM) classifier on the yeast dataset. The experimental results demonstrate that our RVM-AB method is obviously better than the SVM-based method. The promising experimental results show the efficiency and simplicity of the proposed method, which can be an automatic decision support tool. To facilitate extensive studies for future proteomics research, we developed a freely available web server called RVMAB-PPI in Hypertext Preprocessor (PHP) for predicting PPIs. The web server including source code and the datasets are available at http://219.219.62.123:8888/ppi_ab/.


Assuntos
Biologia Computacional/métodos , Mapeamento de Interação de Proteínas/métodos , Análise de Sequência de Proteína/métodos , Proteínas de Bactérias/metabolismo , Simulação por Computador , Bases de Dados de Proteínas , Helicobacter pylori/metabolismo , Análise de Componente Principal , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Máquina de Vetores de Suporte , Navegador
5.
Evol Bioinform Online ; 20: 11769343241292224, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39464790

RESUMO

Introduction: Predicting Self-interacting proteins (SIPs) is a crucial area of research in predicting protein functions, as well as in understanding gene-disease and disease-drug associations. These interactions are integral to numerous cellular processes and play pivotal roles within cells. However, traditional methods for identifying SIPs through biological experiments are often expensive, time-consuming, and have long cycles. Therefore, the development of effective computational methods for accurately predicting SIPs is not only necessary but also presents a significant challenge. Results: In this research, we introduce a novel computational prediction technique, VGGNGLCM, which leverages protein sequence data. This method integrates the VGGNet deep convolutional neural network (VGGN) with the Gray-Level Co-occurrence Matrix (GLCM) to detect Self-interacting proteins associations. Specifically, we initially utilized Position Specific Scoring Matrix (PSSM) to capture protein evolutionary information and integrated key features from PSSM using GLCM. We then employed VGGNet as a predictive classifier, leveraging its capabilities for powerful learning and classification prediction. Subsequently, the extracted features were input into the VGGNet deep convolutional neural network to identify Self-interacting proteins. To evaluate the performance of the VGGNGLCM model, we conducted experiments using yeast and human datasets, achieving average accuracies of 95.68% and 97.72% respectively. Additionally, we compared the prediction performance of the VGGNet classifier with that of the Convolutional Neural Network (CNN) and the state-of-the-art Support Vector Machine (SVM) using the same feature extraction method. We also compared the prediction ability of VGGNGLCM with other existing approaches. The comparison results further demonstrate the superior performance of VGGNGLCM over other prediction models in this domain. Conclusion: The experimental verification further strengthens the evidence that VGGNGLCM is effective and robust compared to existing methods. It also highlights the high accuracy and robustness of the VGGNGLCM model in predicting Self-interacting proteins (SIPs). Consequently, we believe that the VGGNGLCM method serves as a valuable computational tool and can catalyze extensive bioinformatics research related to SIPs prediction.

6.
BioData Min ; 14(1): 3, 2021 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-33472664

RESUMO

BACKGROUND: Prediction of novel Drug-Target interactions (DTIs) plays an important role in discovering new drug candidates and finding new proteins to target. In consideration of the time-consuming and expensive of experimental methods. Therefore, it is a challenging task that how to develop efficient computational approaches for the accurate predicting potential associations between drug and target. RESULTS: In the paper, we proposed a novel computational method called WELM-SURF based on drug fingerprints and protein evolutionary information for identifying DTIs. More specifically, for exploiting protein sequence feature, Position Specific Scoring Matrix (PSSM) is applied to capturing protein evolutionary information and Speed up robot features (SURF) is employed to extract sequence key feature from PSSM. For drug fingerprints, the chemical structure of molecular substructure fingerprints was used to represent drug as feature vector. Take account of the advantage that the Weighted Extreme Learning Machine (WELM) has short training time, good generalization ability, and most importantly ability to efficiently execute classification by optimizing the loss function of weight matrix. Therefore, the WELM classifier is used to carry out classification based on extracted features for predicting DTIs. The performance of the WELM-SURF model was evaluated by experimental validations on enzyme, ion channel, GPCRs and nuclear receptor datasets by using fivefold cross-validation test. The WELM-SURF obtained average accuracies of 93.54, 90.58, 85.43 and 77.45% on enzyme, ion channels, GPCRs and nuclear receptor dataset respectively. We also compared our performance with the Extreme Learning Machine (ELM), the state-of-the-art Support Vector Machine (SVM) on enzyme and ion channels dataset and other exiting methods on four datasets. By comparing with experimental results, the performance of WELM-SURF is significantly better than that of ELM, SVM and other previous methods in the domain. CONCLUSION: The results demonstrated that the proposed WELM-SURF model is competent for predicting DTIs with high accuracy and robustness. It is anticipated that the WELM-SURF method is a useful computational tool to facilitate widely bioinformatics studies related to DTIs prediction.

7.
Evol Bioinform Online ; 16: 1176934320924674, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32550764

RESUMO

Self-interacting proteins (SIPs) play crucial roles in biological activities of organisms. Many high-throughput methods can be used to identify SIPs. However, these methods are both time-consuming and expensive. How to develop effective computational approaches for identifying SIPs is a challenging task. In the article, we present a novel computational method called RRN-SIFT, which combines the recurrent neural network (RNN) with scale invariant feature transform (SIFT) to predict SIPs based on protein evolutionary information. The main advantage of the proposed RNN-SIFT model is that it uses SIFT for extracting key feature by exploring the evolutionary information embedded in Position-Specific Iterated BLAST-constructed position-specific scoring matrix and employs an RNN classifier to perform classification based on extracted features. Extensive experiments show that the RRN-SIFT obtained average accuracy of 94.34% and 97.12% on the yeast and human dataset, respectively. We also compared our performance with the back propagation neural network (BPNN), the state-of-the-art support vector machine (SVM), and other existing methods. By comparing with experimental results, the performance of RNN-SIFT is significantly better than that of the BPNN, SVM, and other previous methods in the domain. Therefore, we conclude that the proposed RNN-SIFT model is a useful tool for predicting SIPs, as well to solve other bioinformatics tasks. To facilitate widely studies and encourage future proteomics research, a freely available web server called RNN-SIFT-SIPs was developed at http://219.219.62.123:8888/RNNSIFT/ including the source code and the SIP datasets.

8.
Evol Bioinform Online ; 15: 1176934319844522, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31080346

RESUMO

Protein-protein interactions (PPIs) are essential to a number of biological processes. The PPIs generated by biological experiment are both time-consuming and expensive. Therefore, many computational methods have been proposed to identify PPIs. However, most of these methods are limited as they are difficult to compute and rely on a large number of homologous proteins. Accordingly, it is urgent to develop effective computational methods to detect PPIs using only protein sequence information. The kernel parameter of relevance vector machine (RVM) is set by experience, which may not obtain the optimal solution, affecting the prediction performance of RVM. In this work, we presented a novel computational approach called GWORVM-BIG, which used Bi-gram (BIG) to represent protein sequences on a position-specific scoring matrix (PSSM) and GWORVM classifier to perform classification for predicting PPIs. More specifically, the proposed GWORVM model can obtain the optimum solution of kernel parameters using gray wolf optimizer approach, which has the advantages of less control parameters, strong global optimization ability, and ease of implementation compared with other optimization algorithms. The experimental results on yeast and human data sets demonstrated the good accuracy and efficiency of the proposed GWORVM-BIG method. The results showed that the proposed GWORVM classifier can significantly improve the prediction performance compared with the RVM model using other optimizer algorithms including grid search (GS), genetic algorithm (GA), and particle swarm optimization (PSO). In addition, the proposed method is also compared with other existing algorithms, and the experimental results further indicated that the proposed GWORVM-BIG model yields excellent prediction performance. For facilitating extensive studies for future proteomics research, the GWORVMBIG server is freely available for academic use at http://219.219.62.123:8888/GWORVMBIG.

9.
Evol Bioinform Online ; 15: 1176934319879920, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31619921

RESUMO

BACKGROUND: Increasing evidence has indicated that protein-protein interactions (PPIs) play important roles in various aspects of the structural and functional organization of a cell. Thus, continuing to uncover potential PPIs is an important topic in the biomedical domain. Although various feature extraction methods with machine learning approaches have enhanced the prediction of PPIs. There remains room for improvement by developing novel and effective feature extraction methods and classifier approaches to identify PPIs. METHOD: In this study, we proposed a sequence-based feature extraction method called LCPSSMMF, which combined local coding position-specific scoring matrix (PSSM) with multifeatures fusion. First, we used a novel local coding method based on PSSM to build a new PSSM (CPSSM); the advantage of this method is that it incorporated global and local feature extraction, which can account for the interactions between residues in both continuous and discontinuous regions of amino acid sequences. Second, we adopted 2 different feature extraction methods (Local Average Group [LAG] and Bigram Probability [BP]) to capture multiple key feature information by employing the evolutionary information embedded in the CPSSM matrix. Finally, feature vectors were acquired by using multifeatures fusion method. RESULT: To evaluate the performance of the proposed feature extraction approach, we employed support vector machine (SVM) as a prediction classifier and applied this method to yeast and human PPI datasets. The prediction accuracies of LCPSSMMF were 93.43% and 90.41% on the yeast and human datasets, respectively. Moreover, we also compared the proposed method with the previous sequence-based approaches on the yeast datasets by using the same SVM classifier. The experimental results indicated that the performance of LCPSSMMF significantly exceeded that of several other state-of-the-art methods. It is proven that the LCPSSMMF approach can capture more local and global discriminatory information than almost all previous methods and can function remarkably well in identifying PPIs. To facilitate extensive research in future proteomics studies, we developed a LCPSSMMFSVM server, which is freely available for academic use at http://219.219.62.123:8888/LCPSSMMFSVM.

10.
J Cheminform ; 9(1): 47, 2017 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-29086182

RESUMO

Self-interactions Proteins (SIPs) is important for their biological activity owing to the inherent interaction amongst their secondary structures or domains. However, due to the limitations of experimental Self-interactions detection, one major challenge in the study of prediction SIPs is how to exploit computational approaches for SIPs detection based on evolutionary information contained protein sequence. In the work, we presented a novel computational approach named WELM-LAG, which combined the Weighed-Extreme Learning Machine (WELM) classifier with Local Average Group (LAG) to predict SIPs based on protein sequence. The major improvement of our method lies in presenting an effective feature extraction method used to represent candidate Self-interactions proteins by exploring the evolutionary information embedded in PSI-BLAST-constructed position specific scoring matrix (PSSM); and then employing a reliable and robust WELM classifier to carry out classification. In addition, the Principal Component Analysis (PCA) approach is used to reduce the impact of noise. The WELM-LAG method gave very high average accuracies of 92.94 and 96.74% on yeast and human datasets, respectively. Meanwhile, we compared it with the state-of-the-art support vector machine (SVM) classifier and other existing methods on human and yeast datasets, respectively. Comparative results indicated that our approach is very promising and may provide a cost-effective alternative for predicting SIPs. In addition, we developed a freely available web server called WELM-LAG-SIPs to predict SIPs. The web server is available at http://219.219.62.123:8888/WELMLAG/ .

12.
Protein Sci ; 25(10): 1825-33, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27452983

RESUMO

Predicting protein-protein interactions (PPIs) is a challenging task and essential to construct the protein interaction networks, which is important for facilitating our understanding of the mechanisms of biological systems. Although a number of high-throughput technologies have been proposed to predict PPIs, there are unavoidable shortcomings, including high cost, time intensity, and inherently high false positive rates. For these reasons, many computational methods have been proposed for predicting PPIs. However, the problem is still far from being solved. In this article, we propose a novel computational method called RVM-BiGP that combines the relevance vector machine (RVM) model and Bi-gram Probabilities (BiGP) for PPIs detection from protein sequences. The major improvement includes (1) Protein sequences are represented using the Bi-gram probabilities (BiGP) feature representation on a Position Specific Scoring Matrix (PSSM), in which the protein evolutionary information is contained; (2) For reducing the influence of noise, the Principal Component Analysis (PCA) method is used to reduce the dimension of BiGP vector; (3) The powerful and robust Relevance Vector Machine (RVM) algorithm is used for classification. Five-fold cross-validation experiments executed on yeast and Helicobacter pylori datasets, which achieved very high accuracies of 94.57 and 90.57%, respectively. Experimental results are significantly better than previous methods. To further evaluate the proposed method, we compare it with the state-of-the-art support vector machine (SVM) classifier on the yeast dataset. The experimental results demonstrate that our RVM-BiGP method is significantly better than the SVM-based method. In addition, we achieved 97.15% accuracy on imbalance yeast dataset, which is higher than that of balance yeast dataset. The promising experimental results show the efficiency and robust of the proposed method, which can be an automatic decision support tool for future proteomics research. For facilitating extensive studies for future proteomics research, we developed a freely available web server called RVM-BiGP-PPIs in Hypertext Preprocessor (PHP) for predicting PPIs. The web server including source code and the datasets are available at http://219.219.62.123:8888/BiGP/.


Assuntos
Algoritmos , Proteínas de Bactérias/metabolismo , Bases de Dados de Proteínas , Helicobacter pylori/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Máquina de Vetores de Suporte , Proteínas de Bactérias/química , Helicobacter pylori/química , Ligação Proteica , Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/química
13.
Mol Biosyst ; 12(12): 3702-3710, 2016 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-27759121

RESUMO

Self-interacting proteins (SIPs) play an essential role in cellular functions and the evolution of protein interaction networks (PINs). Due to the limitations of experimental self-interaction proteins detection technology, it is a very important task to develop a robust and accurate computational approach for SIPs prediction. In this study, we propose a novel computational method for predicting SIPs from protein amino acids sequence. Firstly, a novel feature representation scheme based on Local Binary Pattern (LBP) is developed, in which the evolutionary information, in the form of multiple sequence alignments, is taken into account. Then, by employing the Relevance Vector Machine (RVM) classifier, the performance of our proposed method is evaluated on yeast and human datasets using a five-fold cross-validation test. The experimental results show that the proposed method can achieve high accuracies of 94.82% and 97.28% on yeast and human datasets, respectively. For further assessing the performance of our method, we compared it with the state-of-the-art Support Vector Machine (SVM) classifier, and other existing methods, on the same datasets. Comparison results demonstrate that the proposed method is very promising and could provide a cost-effective alternative for predicting SIPs. In addition, to facilitate extensive studies for future proteomics research, a web server is freely available for academic use at .


Assuntos
Aminoácidos/química , Biologia Computacional/métodos , Proteínas/química , Algoritmos , Sequência de Aminoácidos , Bases de Dados de Proteínas , Evolução Molecular , Humanos , Matrizes de Pontuação de Posição Específica , Ligação Proteica , Mapeamento de Interação de Proteínas/métodos , Proteínas/metabolismo , Curva ROC , Reprodutibilidade dos Testes , Sensibilidade e Especificidade , Máquina de Vetores de Suporte , Navegador
14.
Biomed Res Int ; 2016: 4783801, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27314023

RESUMO

We propose a novel computational method known as RVM-LPQ that combines the Relevance Vector Machine (RVM) model and Local Phase Quantization (LPQ) to predict PPIs from protein sequences. The main improvements are the results of representing protein sequences using the LPQ feature representation on a Position Specific Scoring Matrix (PSSM), reducing the influence of noise using a Principal Component Analysis (PCA), and using a Relevance Vector Machine (RVM) based classifier. We perform 5-fold cross-validation experiments on Yeast and Human datasets, and we achieve very high accuracies of 92.65% and 97.62%, respectively, which is significantly better than previous works. To further evaluate the proposed method, we compare it with the state-of-the-art support vector machine (SVM) classifier on the Yeast dataset. The experimental results demonstrate that our RVM-LPQ method is obviously better than the SVM-based method. The promising experimental results show the efficiency and simplicity of the proposed method, which can be an automatic decision support tool for future proteomics research.


Assuntos
Bases de Dados de Proteínas , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Análise de Sequência de Proteína/métodos , Máquina de Vetores de Suporte , Humanos , Valor Preditivo dos Testes , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
15.
Oncotarget ; 7(50): 82440-82449, 2016 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-27732957

RESUMO

Self-interacting Proteins (SIPs) play an essential role in a wide range of biological processes, such as gene expression regulation, signal transduction, enzyme activation and immune response. Because of the limitations for experimental self-interaction proteins identification, developing an effective computational method based on protein sequence to detect SIPs is much important. In the study, we proposed a novel computational approach called RVMBIGP that combines the Relevance Vector Machine (RVM) model and Bi-gram probability (BIGP) to predict SIPs based on protein sequence. The proposed prediction model includes as following steps: (1) an effective feature extraction method named BIGP is used to represent protein sequences on Position Specific Scoring Matrix (PSSM); (2) Principal Component Analysis (PCA) method is employed for integrating the useful information and reducing the influence of noise; (3) the robust classifier Relevance Vector Machine (RVM) is used to carry out classification. When performed on yeast and human datasets, the proposed RVMBIGP model can achieve very high accuracies of 95.48% and 98.80%, respectively. The experimental results show that our proposed method is very promising and may provide a cost-effective alternative for SIPs identification. In addition, to facilitate extensive studies for future proteomics research, the RVMBIGP server is freely available for academic use at http://219.219.62.123:8888/RVMBIGP.


Assuntos
Biologia Computacional/métodos , Proteínas Fúngicas/química , Matrizes de Pontuação de Posição Específica , Mapeamento de Interação de Proteínas/métodos , Máquina de Vetores de Suporte , Bases de Dados de Proteínas , Proteínas Fúngicas/classificação , Humanos , Análise de Componente Principal , Análise de Sequência de Proteína
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA