Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
1.
J Neurosci ; 41(48): 9988-10003, 2021 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-34642215

RESUMO

Long-term limb nerve injury often leads to mirror-image pain (MIP), an abnormal pain sensation in the limb contralateral to the injury. Although it is clear that MIP is mediated in part by central nociception processing, the underlying mechanisms remain poorly understood. The anterior cingulate cortex (ACC) is a key brain region that receives relayed peripheral nociceptive information from the contralateral limb. In this study, we induced MIP in male mice, in which a unilateral chronic constrictive injury of the sciatic nerve (CCI) induced a decreased nociceptive threshold in both hind limbs and an increased number of c-Fos-expressing neurons in the ACC both contralateral and ipsilateral to the injured limb. Using viral-mediated projection mapping, we observed that a portion of ACC neurons formed monosynaptic connections with contralateral ACC neurons. Furthermore, the number of cross-callosal projection ACC neurons that exhibited c-Fos signal was increased in MIP-expressing mice, suggesting enhanced transmission between ACC neurons of the two hemispheres. Moreover, selective inhibition of the cross-callosal projection ACC neurons contralateral to the injured limb normalized the nociceptive sensation of the uninjured limb without affecting the increased nociceptive sensation of the injured limb in CCI mice. In contrast, inhibition of the non-cross-callosal projection ACC neurons contralateral to the injury normalized the nociceptive sensation of the injured limb without affecting the MIP exhibited in the uninjured limb. These results reveal a circuit mechanism, namely, the cross-callosal projection of ACC between two hemispheres, that contributes to MIP and possibly other forms of contralateral migration of pain sensation.SIGNIFICANCE STATEMENT Mirror-image pain (MIP) refers to the increased pain sensitivity of the contralateral body part in patients with chronic pain. This pathology requires central processing, yet the mechanisms are less known. Here, we demonstrate that the cross-callosal projection neurons in the anterior cingulate cortex (ACC) contralateral to the injury contribute to MIP exhibited in the uninjured limb, but do not affect nociceptive sensation of the injured limb. In contrast, the non-cross-callosal projection neurons in the ACC contralateral to the injury contribute to nociceptive sensation of the injured limb, but do not affect MIP exhibited in the uninjured limb. Our study depicts a novel cross-callosal projection of ACC that contributes to MIP, providing a central mechanism for MIP in chronic pain state.


Assuntos
Lateralidade Funcional/fisiologia , Giro do Cíngulo/fisiopatologia , Neuralgia/fisiopatologia , Traumatismos dos Nervos Periféricos/fisiopatologia , Animais , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Neuralgia/etiologia
2.
Curr Microbiol ; 72(6): 700-6, 2016 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-26883127

RESUMO

We present a two-step method for scarless-markerless genome genetic modification in Salmonella enterica based on the improved suicide plasmid pGMB152. The whole LacZYA gene can provide a lacZ-based blue/white screening strategy for fast selection of double-crossover mutants by allelic exchange. The high efficiency of this genetic engineering strategy permits the study of gene function by gene knockin, site-directed mutagenesis, and gene knockout to construct live attenuated vaccines.


Assuntos
Engenharia Genética/métodos , Genoma Bacteriano , Salmonella enterica/genética , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Mutagênese Insercional , Plasmídeos/genética , Plasmídeos/metabolismo , Salmonella enterica/metabolismo
3.
J Neurosci ; 34(33): 10870-83, 2014 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-25122889

RESUMO

Self-generated neuronal activity originating from subcortical regions drives early spontaneous motor activity, which is a hallmark of the developing sensorimotor system. However, the neural activity patterns and role of primary motor cortex (M1) in these early movements are still unknown. Combining voltage-sensitive dye imaging (VSDI) with simultaneous extracellular multielectrode recordings in postnatal day 3 (P3)-P5 rat primary somatosensory cortex (S1) and M1 in vivo, we observed that tactile forepaw stimulation induced spindle bursts in S1 and gamma and spindle bursts in M1. Approximately 40% of the spontaneous gamma and spindle bursts in M1 were driven by early motor activity, whereas 23.7% of the M1 bursts triggered forepaw movements. Approximately 35% of the M1 bursts were uncorrelated to movements and these bursts had significantly fewer spikes and shorter burst duration. Focal electrical stimulation of layer V neurons in M1 mimicking physiologically relevant 40 Hz gamma or 10 Hz spindle burst activity reliably elicited forepaw movements. We conclude that M1 is already involved in somatosensory information processing during early development. M1 is mainly activated by tactile stimuli triggered by preceding spontaneous movements, which reach M1 via S1. Only a fraction of M1 activity transients trigger motor responses directly. We suggest that both spontaneously occurring and sensory-evoked gamma and spindle bursts in M1 contribute to the maturation of corticospinal and sensorimotor networks required for the refinement of sensorimotor coordination.


Assuntos
Potenciais de Ação/fisiologia , Potenciais Somatossensoriais Evocados/fisiologia , Córtex Motor/fisiologia , Neurônios/fisiologia , Córtex Somatossensorial/fisiologia , Animais , Animais Recém-Nascidos , Feminino , Masculino , Ratos , Ratos Wistar
4.
Cereb Cortex ; 23(7): 1742-55, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22700645

RESUMO

During the pre- and neonatal period, the cerebral cortex reveals distinct patterns of spontaneous synchronized activity, which is critically involved in the formation of early networks and in the regulation of neuronal survival and programmed cell death (apoptosis). During this period, the cortex is also highly vulnerable to inflammation and in humans prenatal infection may have a profound impact on neurodevelopment causing long-term neurological deficits. Using in vitro and in vivo multi-electrode array recordings and quantification of caspase-3 (casp-3)-dependent apoptosis, we demonstrate that lipopolysaccharide-induced inflammation causes rapid alterations in the pattern of spontaneous burst activities, which subsequently leads to an increase in apoptosis. We show that these inflammatory effects are specifically initiated by the microglia-derived pro-inflammatory cytokine tumor necrosis factor α and the chemokine macrophage inflammatory protein 2. Our data demonstrate that inflammation-induced modifications in spontaneous network activities influence casp-3-dependent cell death in the developing cerebral cortex.


Assuntos
Apoptose/fisiologia , Córtex Cerebral/fisiopatologia , Inflamação/fisiopatologia , Microglia/metabolismo , Fator de Necrose Tumoral alfa/biossíntese , Animais , Animais Recém-Nascidos , Western Blotting , Córtex Cerebral/metabolismo , Córtex Cerebral/patologia , Eletrofisiologia , Inflamação/induzido quimicamente , Inflamação/patologia , Lipopolissacarídeos/toxicidade , Neurônios/patologia , Ratos , Ratos Wistar
5.
Cereb Cortex ; 23(6): 1299-316, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22593243

RESUMO

Neocortical areas are organized in columns, which form the basic structural and functional modules of intracortical information processing. Using voltage-sensitive dye imaging and simultaneous multi-channel extracellular recordings in the barrel cortex of newborn rats in vivo, we found that spontaneously occurring and whisker stimulation-induced gamma bursts followed by longer lasting spindle bursts were topographically organized in functional cortical columns already at the day of birth. Gamma bursts synchronized a cortical network of 300-400 µm in diameter and were coherent with gamma activity recorded simultaneously in the thalamic ventral posterior medial (VPM) nucleus. Cortical gamma bursts could be elicited by focal electrical stimulation of the VPM. Whisker stimulation-induced spindle and gamma bursts and the majority of spontaneously occurring events were profoundly reduced by the local inactivation of the VPM, indicating that the thalamus is important to generate these activity patterns. Furthermore, inactivation of the barrel cortex with lidocaine reduced the gamma activity in the thalamus, suggesting that a cortico-thalamic feedback loop modulates this early thalamic network activity.


Assuntos
Relógios Biológicos/fisiologia , Mapeamento Encefálico , Rede Nervosa/fisiologia , Córtex Somatossensorial/fisiologia , Núcleos Ventrais do Tálamo/fisiologia , Potenciais de Ação/efeitos dos fármacos , Potenciais de Ação/fisiologia , Anestésicos Locais/farmacologia , Animais , Animais Recém-Nascidos , Estimulação Elétrica , Eletrólitos/efeitos adversos , Retroalimentação Fisiológica , Lidocaína/farmacologia , Ratos , Tempo de Reação/efeitos dos fármacos , Tempo de Reação/fisiologia , Córtex Somatossensorial/efeitos dos fármacos , Córtex Somatossensorial/crescimento & desenvolvimento , Estatísticas não Paramétricas , Vibrissas/inervação , Imagens com Corantes Sensíveis à Voltagem
6.
J Clin Invest ; 2024 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-39058792

RESUMO

Patients with autism spectrum disorder (ASD) frequently experience sleep disturbance. Genetic mutations in Neuroligin-3 (NLG3) genes are highly correlative with ASD and sleep disturbance. However, the cellular and neural circuit bases of this correlation remain elusive. Here, we find the conditional knockout of NLG3 (NLG3-CKO) in the medial septum (MS) impairs social memory and reduces sleep. NLG3 knockout in MS causes hyperactivity of MS-GABA neurons during social avoidance and wakefulness. Activation of MSGABA neurons induces social memory deficits and sleep loss in C57BL/6 mice. In contrast, inactivation of these neurons ameliorates social memory deficits and sleep loss in NLG3-CKO mice. Sleep deprivation leads to social memory deficits, while social isolation causes sleep loss, both resulting in a reduction of NLG3 expression and an increase in activity of GABAergic neurons in MS from C57BL/6 mice. Furthermore, MS-GABA-innervated CA2 neurons specifically regulate social memory without impacting sleep, whereas MSGABA-innervating neurons in the preoptic area selectively control sleep without affecting social behavior. Together, these findings demonstrate that the hyperactive MS-GABA neurons impair social memory and disrupt sleep resulting from NLG3 knockout in MS, and achieve the modality specificity through their divergent downstream targets.

7.
J Neurosci ; 32(28): 9511-6, 2012 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-22787036

RESUMO

Long-term potentiation (LTP) is important for the activity-dependent formation of early cortical circuits. In the neonatal rodent barrel cortex, LTP has been studied only in vitro. We combined voltage-sensitive dye imaging with extracellular multielectrode recordings to study whisker stimulation-induced LTP in the whisker-to-barrel cortex pathway of the neonatal rat barrel cortex in vivo. Single whisker stimulation at 2 Hz for 10 min induced an age-dependent expression of LTP in postnatal day (P) 0 to P14 rats, with the strongest expression of LTP at P3-P5. The magnitude of LTP was largest in the activated barrel-related column, smaller in the surrounding septal region, and no LTP could be observed in the neighboring barrel. Current source density analyses revealed an LTP-associated increase of synaptic current sinks in layer IV/lower layer II/III at P3-P5 and in the cortical plate/upper layer V at P0-P1. Our study demonstrates for the first time an age-dependent and spatially confined LTP in the barrel cortex of the newborn rat in vivo.


Assuntos
Potenciais Somatossensoriais Evocados/fisiologia , Potenciação de Longa Duração/fisiologia , Neurônios/fisiologia , Córtex Somatossensorial/citologia , Vias Aferentes/fisiologia , Fatores Etários , Animais , Animais Recém-Nascidos , Biofísica , Estimulação Elétrica , Técnicas In Vitro , Técnicas de Patch-Clamp , Ratos , Proteínas da Membrana Plasmática de Transporte de Serotonina/metabolismo , Córtex Somatossensorial/fisiologia , Estatísticas não Paramétricas , Vibrissas/inervação , Imagens com Corantes Sensíveis à Voltagem/métodos
8.
Nat Commun ; 14(1): 4700, 2023 08 05.
Artigo em Inglês | MEDLINE | ID: mdl-37543693

RESUMO

A comorbidity of chronic pain is sleep disturbance. Here, we identify a dual-functional ensemble that regulates both pain-like behaviour induced by chronic constrictive injury or complete Freund's adjuvant, and sleep wakefulness, in the nucleus accumbens (NAc) in mice. Specifically, a select population of NAc neurons exhibits increased activity either upon nociceptive stimulation or during wakefulness. Experimental activation of the ensemble neurons exacerbates pain-like (nociceptive) responses and reduces NREM sleep, while inactivation of these neurons produces the opposite effects. Furthermore, NAc ensemble primarily consists of D1 neurons and projects divergently to the ventral tegmental area (VTA) and preoptic area (POA). Silencing an ensemble innervating VTA neurons selectively increases nociceptive responses without affecting sleep, whereas inhibiting ensemble-innervating POA neurons decreases NREM sleep without affecting nociception. These results suggest a common NAc ensemble that encodes chronic pain and controls sleep, and achieves the modality specificity through its divergent downstream circuit targets.


Assuntos
Dor Crônica , Núcleo Accumbens , Camundongos , Animais , Núcleo Accumbens/fisiologia , Área Tegmentar Ventral/fisiologia , Neurônios , Sono/fisiologia
9.
Curr Biol ; 31(7): 1379-1392.e4, 2021 04 12.
Artigo em Inglês | MEDLINE | ID: mdl-33545041

RESUMO

The medial septum (MS) is involved in arousal-based behaviors and modulates general anesthesia response. However, the role of MS in wakefulness control remains unknown. Here, combining double fluorescence in situ hybridization and optrode recording, we showed that MS glutamatergic neurons exhibited higher activities preferentially during wakefulness. Activating these neurons, either optogenetically or chemogenetically, strongly promoted wakefulness, mainly through the transition from non-rapid eye movement (NREM) sleep to wakefulness. In contrast, inactivation of these neurons reduced wakefulness by the transition from wakefulness to NREM sleep. Furthermore, both rabies-mediated monosynaptic retrograde and anterograde tracing showed that MS glutamatergic neurons monosynaptically innervated lateral hypothalamus (LH) glutamatergic neurons, which were also wake-active as well as wake-promoting. Activating MS-derived glutamatergic terminals in LH enhanced wakefulness, whereas silencing MS glutamatergic neurons destabilized the wake-active preference of LH glutamatergic neurons. These results reveal a vital role of MS glutamatergic neurons in wakefulness control and depict a novel septo-hypothalamic circuit for wakefulness.


Assuntos
Ácido Glutâmico/metabolismo , Hipotálamo/citologia , Hipotálamo/fisiologia , Vias Neurais , Neurônios/metabolismo , Vigília , Animais , Hibridização in Situ Fluorescente , Masculino , Camundongos , Sono
10.
Neurobiol Stress ; 15: 100359, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34258335

RESUMO

Post-traumatic stress disorder (PTSD) is a psychiatric disorder that afflicts many individuals. However, its molecular and cellular mechanisms remain largely unexplored. Here, we found PTSD susceptible mice exhibited significant up-regulation of alpha-Ca2+/calmodulin-dependent kinase II (αCaMKII) in the lateral amygdala (LA). Consistently, increasing αCaMKII in the LA not only caused PTSD-like behaviors such as impaired fear extinction and anxiety-like behaviors, but also attenuated N-methyl-D-aspartate receptor (NMDAR)-dependent long-term depression (LTD) at thalamo-lateral amygdala (T-LA) synapses, and reduced GluA1-Ser845/Ser831 dephosphorylation and a-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor (AMPAR) internalization. Suppressing the elevated αCaMKII to normal levels completely rescued both PTSD-like behaviors and the impairments in LTD, GluA1-Ser845/Ser831 dephosphorylation, and AMPAR internalization. Intriguingly, deficits in GluA1-Ser845/Ser831 dephosphorylation and AMPAR internalization were detected not only after impaired fear extinction, but also after attenuated LTD. Our results suggest that αCaMKII in the LA may be a potential molecular determinant of PTSD. We further demonstrate for the first time that GluA1-Ser845/Ser831 dephosphorylation and AMPAR internalization are molecular links between fear extinction and LTD.

11.
Sheng Li Xue Bao ; 61(3): 279-84, 2009 Jun 25.
Artigo em Zh | MEDLINE | ID: mdl-19536441

RESUMO

The purpose of this study was to investigate the influence of electrical stimulation of anterior cingulate cortex (ACC) on spontaneous activity of neurons in thalamic ventrobasal nucleus (VB). Experiments were performed on 12 male Sprague-Dawley rats weighing 250-310 g (4-5 months old). According to Paxinos and Watson's coordinate atlas of the rat, the frontal and parietal cortical areas were exposed by craniotomy, the recording electrodes were then inserted into the VB (P 2.4-4.1 mm, R 2.0-3.5 mm, H 5.2-6.8 mm) and the stimulating electrodes into the ACC (A 1.1-3.0 mm, R 0.0-1.0 mm, H 1.5-2.4 mm). Single-unit activities were recorded extracellularly in the VB by glass micropipettes (impedance 3-8 MOmega) filled with 0.5 mol/L sodium acetate solution containing saturated Fast Green. To study the effects of ACC activation on the spontaneous activities of VB cells, single electrical pulse (0.2 ms duration) was delivered to the ACC by a concentric bipolar stainless steel electrode (0.32 mm outer diameter). An effective ACC stimulation was determined for each VB neuron by gradually increasing the current intensity from 0.1 mA until either a significant change in the spontaneous activity of the VB neuron was observed, or the current intensity reached 0.4 mA. The results showed that ACC stimulation significantly suppressed the spontaneous activities in 12 out of 53 VB neurons (22.6%). (1) After the stimulation was delivered to ACC, the spontaneous activities of different VB neurons were totally suppressed for different time span. (2) There was obvious dose-effect relevance between ACC stimulation intensity and their inhibitory effect. The duration of complete inhibition was prolonged with the increases in the intensity and number of stimulation impulses in ACC. (3) The stimulation in the ACC depressed the spontaneous activities of VB neurons in different forms and this inhibition exhibited an accumulative effect. All these results indicate that the stimulation of ACC exerts an inhibitory influence on the spontaneous activities of VB neurons.


Assuntos
Estimulação Elétrica , Giro do Cíngulo/fisiologia , Neurônios/citologia , Núcleos Talâmicos/citologia , Animais , Masculino , Ratos , Ratos Sprague-Dawley
12.
Brain Res ; 1548: 1-11, 2014 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-24389032

RESUMO

Subthreshold resonance is a characteristic membrane property of different neuronal classes, is critically involved in the generation of network oscillations, and tunes the integration of synaptic inputs to particular frequency ranges. In order to investigate whether neocortical GABAergic interneurons show resonant behavior already during early postnatal development, we performed whole-cell patch-clamp recordings from visually identified interneurons in supragranular layers of parietal regions in coronal neocortical slices from postnatal day (P) P6-P13 GAD67-GFP knock-in mice. Subthreshold resonance was analyzed by injection of sinusoidal current with varying frequency. About 50% of the investigated GABAergic interneurons showed subthreshold resonance with an average frequency of 2.0±0.2 Hz (n=38). Membrane hyperpolarization to -86 mV attenuated the frequency and strength of subthreshold resonance. In the presence of 1 mM Ni(2+) subthreshold resonance was virtually abolished, suggesting that T-type Ca(2+) currents are critically involved in the generation of resonance. In contrast, subthreshold resonance was not affected by ZD7288, a blocker of HCN channels. Application of TTX suppressed subthreshold resonance at depolarized, but not hyperpolarized membrane potential, suggesting that persistent Na(+) current contribute to the amplification of membrane resonance. In summary, these results demonstrate that GABAergic interneurons express subthreshold resonance at low frequencies, with T-type Ca(2+) and persistent Na(+) currents underlying the generation of membrane resonance. The membrane resonance of immature interneurons may contribute to the generation of slow oscillatory activity pattern in the immature neocortex and enhance the temporal precision of synaptic integration in developing cortical neurons.


Assuntos
Neurônios GABAérgicos/fisiologia , Glutamato Descarboxilase/genética , Interneurônios/fisiologia , Potenciais da Membrana/fisiologia , Neocórtex/fisiologia , Animais , Canais de Cálcio Tipo T/fisiologia , Técnicas de Introdução de Genes , Proteínas de Fluorescência Verde/genética , Camundongos , Lobo Parietal/fisiologia , Canais de Sódio/fisiologia
13.
Brain Res Bull ; 108: 44-50, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25157962

RESUMO

The effects of early deprivation (ED, which involves both dam and littermate deprivation) on anxiety and memory are less investigated in comparison with maternal separation (MS), and it is not yet clear how ED affects long-term potentiation (LTP) in the hippocampal Schaffer collateral pathway. By using a series of behavioral tests, enzyme-linked immunosorbent assay and field potential recording, we explored the effect of pre-weaning daily 3-h ED on anxiety, memory and potential mechanisms in adult male rats. Compared with control, ED rats spent longer time in open arms of elevated plus maze and in light compartment of light-dark transition box. Consistently, stress-induced blood plasma corticosterone level was also lower in ED rats. Moreover, ED rats showed better performance in social recognition and Morris water maze test. In accordance with results in memory tests, the threshold of LTP induction in hippocampal CA3-CA1 pathway of ED rats was also reduced. Our results indicate ED reduced anxiety, but enhanced social recognition and spatial reference memory. We suggest the diminished hypothalamic-pituitary-adrenal axis response and facilitated hippocampal LTP may contribute to the anxiety-reducing and memory-enhancing effects of ED, respectively.


Assuntos
Ansiedade/fisiopatologia , Privação Materna , Isolamento Social , Memória Espacial/fisiologia , Estresse Psicológico/fisiopatologia , Animais , Ansiedade/sangue , Região CA1 Hipocampal/fisiopatologia , Região CA3 Hipocampal/fisiopatologia , Corticosterona/sangue , Potenciais Pós-Sinápticos Excitadores , Potenciação de Longa Duração , Masculino , Atividade Motora , Ratos , Ratos Sprague-Dawley
14.
Neuron ; 60(2): 353-66, 2008 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-18957226

RESUMO

Rapid and selective erasures of certain types of memories in the brain would be desirable under certain clinical circumstances. By employing an inducible and reversible chemical-genetic technique, we find that transient alphaCaMKII overexpression at the time of recall impairs the retrieval of both newly formed one-hour object recognition memory and fear memories, as well as 1-month-old fear memories. Systematic analyses suggest that excessive alphaCaMKII activity-induced recall deficits are not caused by disrupting the retrieval access to the stored information but are, rather, due to the active erasure of the stored memories. Further experiments show that the recall-induced erasure of fear memories is highly restricted to the memory being retrieved while leaving other memories intact. Therefore, our study reveals a molecular genetic paradigm through which a given memory, such as new or old fear memory, can be rapidly and specifically erased in a controlled and inducible manner in the brain.


Assuntos
Encéfalo/enzimologia , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/genética , Medo/fisiologia , Transtornos da Memória/enzimologia , Transtornos da Memória/genética , Reconhecimento Psicológico/fisiologia , Animais , Comportamento Animal/fisiologia , Encéfalo/fisiopatologia , Gatos , Condicionamento Psicológico/fisiologia , Regulação Enzimológica da Expressão Gênica/genética , Terapia Genética/métodos , Transtornos da Memória/fisiopatologia , Camundongos , Camundongos Transgênicos , Biologia Molecular/métodos , Olfato/fisiologia , Transtornos de Estresse Pós-Traumáticos/enzimologia , Transtornos de Estresse Pós-Traumáticos/genética , Transtornos de Estresse Pós-Traumáticos/terapia , Fatores de Tempo , Regulação para Cima/genética
15.
Neurosci Bull ; 24(4): 251-7, 2008 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-18668154

RESUMO

OBJECTIVE: To characterize the function of a new xanomeline-derived M1 agonist, 3-[3-(3-florophenyl-2-propyn-1-ylthio)-1,2,5-thiadiazol-4-yl]-1,2,5,6- tetrahydro-1-methylpyridine Oxalate (EUK1001), the acute toxicity and the effects on synaptic plasticity and cognition of EUK1001 were evaluated. METHODS: To examine the median lethal dose (LD50) of EUK1001, a wide dose range of EUK1001 was administered by p.o. and i.p. in aged mice. Furthermore, novel object recognition task and in vitro electrophysiological technique were utilized to investigate the effects of EUK1001 on recognition memory and hippocampal synaptic plasticity in aged mice. RESULTS: EUK1001 exhibited lower toxicity than xanomeline, and improved the performance of aged mice in the novel object recognition test. In addition, bath application of 1 micromol/L EUK1001 directly induced long-term potentiation in the hippocampus slices. CONCLUSION: We conclude that EUK1001 can improve the age-related cognitive deficits.


Assuntos
Encéfalo/efeitos dos fármacos , Memória/efeitos dos fármacos , Agonistas Muscarínicos/administração & dosagem , Agonistas Muscarínicos/efeitos adversos , Piridinas/administração & dosagem , Piridinas/efeitos adversos , Tiadiazóis/administração & dosagem , Tiadiazóis/efeitos adversos , Envelhecimento/efeitos dos fármacos , Animais , Relação Dose-Resposta a Droga , Potenciais Pós-Sinápticos Excitadores/efeitos dos fármacos , Dose Letal Mediana , Potenciação de Longa Duração/efeitos dos fármacos , Camundongos , Piridinas/química , Tiadiazóis/química
16.
Neurosci Bull ; 23(5): 300-6, 2007 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-17952140

RESUMO

OBJECTIVE: To determine whether the convergences of tactile information also occur at thalamic ventroposterolateral nucleus in rats, we investigated the properties of tactile responses of the thalamic ventroposterolateral nucleus in rats. METHODS: Unit responses were recorded extracellularly from thalamic ventroposterolateral nucleus in anesthetized rats. RESULTS: Among 156 neurons examined, 140 neurons (89.7%) had the single, continual and small receptive fields, and 16 neurons (10.3%) had two discrete receptive fields. Some neurons?exhibited different responses to the same intensity stimulation which delivered to different points in their receptive fields. In addition, 4.5% neurons (n = 7) responded only to locomotive stimulation but?not to a punctiform tactile stimulation. CONCLUSION: The majority of neurons in ventroposterolateral nucleus of rats have the spatial, temporal and submodal characteristics of cutaneous receptors, while the minority of neurons exhibit the responses of interaction of different peripheral receptors. Therefore, it is concluded that there are convergences of tactile information at the ventroposterolateral nucleus of rats.


Assuntos
Vias Neurais/citologia , Neurônios/citologia , Pele/inervação , Núcleos Talâmicos/citologia , Animais , Masculino , Vias Neurais/fisiologia , Neurônios/fisiologia , Estimulação Física , Ratos , Ratos Sprague-Dawley , Núcleos Talâmicos/fisiologia , Tato
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA