Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
1.
Nat Mater ; 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38622325

RESUMO

A magnon is a collective excitation of the spin structure in a magnetic insulator and can transmit spin angular momentum with negligible dissipation. This quantum of a spin wave has always been manipulated through magnetic dipoles (that is, by breaking time-reversal symmetry). Here we report the experimental observation of chiral spin transport in multiferroic BiFeO3 and its control by reversing the ferroelectric polarization (that is, by breaking spatial inversion symmetry). The ferroelectrically controlled magnons show up to 18% modulation at room temperature. The spin torque that the magnons in BiFeO3 carry can be used to efficiently switch the magnetization of adjacent magnets, with a spin-torque efficiency comparable to the spin Hall effect in heavy metals. Utilizing such controllable magnon generation and transmission in BiFeO3, an all-oxide, energy-scalable logic is demonstrated composed of spin-orbit injection, detection and magnetoelectric control. Our observations open a new chapter of multiferroic magnons and pave another path towards low-dissipation nanoelectronics.

2.
Nano Lett ; 24(20): 5937-5943, 2024 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-38712885

RESUMO

Advanced microelectronics in the future may require semiconducting channel materials beyond silicon. Two-dimensional (2D) semiconductors, with their atomically thin thickness, hold great promise for future electronic devices. One challenge to achieving high-performance 2D semiconductor field effect transistors (FET) is the high contact resistance at the metal-semiconductor interface. In this study, we develop a charge-transfer doping strategy with WSe2/α-RuCl3 heterostructures to achieve low-resistance ohmic contact for p-type monolayer WSe2 transistors. We show that hole doping as high as 3 × 1013 cm-2 can be achieved in the WSe2/α-RuCl3 heterostructure due to its type-III band alignment, resulting in an ohmic contact with resistance of 4 kΩ µm. Based on that, we demonstrate p-type WSe2 transistors with an on-current of 35 µA·µm-1 and an ION/IOFF ratio exceeding 109 at room temperature.

3.
Proc Natl Acad Sci U S A ; 118(48)2021 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-34819380

RESUMO

Chiral Weyl fermions with linear energy-momentum dispersion in the bulk accompanied by Fermi-arc states on the surfaces prompt a host of enticing optical effects. While new Weyl semimetal materials keep emerging, the available optical probes are limited. In particular, isolating bulk and surface electrodynamics in Weyl conductors remains a challenge. We devised an approach to the problem based on near-field photocurrent imaging at the nanoscale and applied this technique to a prototypical Weyl semimetal TaIrTe4 As a first step, we visualized nano-photocurrent patterns in real space and demonstrated their connection to bulk nonlinear conductivity tensors through extensive modeling augmented with density functional theory calculations. Notably, our nanoscale probe gives access to not only the in-plane but also the out-of-plane electric fields so that it is feasible to interrogate all allowed nonlinear tensors including those that remained dormant in conventional far-field optics. Surface- and bulk-related nonlinear contributions are distinguished through their "symmetry fingerprints" in the photocurrent maps. Robust photocurrents also appear at mirror-symmetry breaking edges of TaIrTe4 single crystals that we assign to nonlinear conductivity tensors forbidden in the bulk. Nano-photocurrent spectroscopy at the boundary reveals a strong resonance structure absent in the interior of the sample, providing evidence for elusive surface states.

4.
Phys Rev Lett ; 131(18): 186701, 2023 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-37977621

RESUMO

The Fe intercalated transition metal dichalcogenide (TMD), Fe_{1/3}NbS_{2}, exhibits remarkable resistance switching properties and highly tunable spin ordering phases due to magnetic defects. We conduct synchrotron x-ray scattering measurements on both underintercalated (x=0.32) and overintercalated (x=0.35) samples. We discover a new charge order phase in the overintercalated sample, where the excess Fe atoms lead to a zigzag antiferromagnetic order. The agreement between the charge and magnetic ordering temperatures, as well as their intensity relationship, suggests a strong magnetoelastic coupling as the mechanism for the charge ordering. Our results reveal the first example of a charge order phase among the intercalated TMD family and demonstrate the ability to stabilize charge modulation by introducing electronic correlations, where the charge order is absent in bulk 2H-NbS_{2} compared to other pristine TMDs.

5.
Phys Rev Lett ; 129(8): 087601, 2022 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-36053684

RESUMO

Spin transport through magnetic insulators has been demonstrated in a variety of materials and is an emerging pathway for next-generation spin-based computing. To modulate spin transport in these systems, one typically applies a sufficiently strong magnetic field to allow for deterministic control of magnetic order. Here, we make use of the well-known multiferroic magnetoelectric, BiFeO_{3}, to demonstrate nonvolatile, hysteretic, electric-field control of thermally excited magnon current in the absence of an applied magnetic field. These findings are an important step toward magnon-based devices, where electric-field-only control is highly desirable.

6.
Nature ; 535(7611): 266-70, 2016 07 14.
Artigo em Inglês | MEDLINE | ID: mdl-27376477

RESUMO

The dispersion of charge carriers in a metal is distinctly different from that of free electrons owing to their interactions with the crystal lattice. These interactions may lead to quasiparticles mimicking the massless relativistic dynamics of high-energy particle physics, and they can twist the quantum phase of electrons into topologically non-trivial knots-producing protected surface states with anomalous electromagnetic properties. These effects intertwine in materials known as Weyl semimetals, and in their crystal-symmetry-protected analogues, Dirac semimetals. The latter show a linear electronic dispersion in three dimensions described by two copies of the Weyl equation (a theoretical description of massless relativistic fermions). At the surface of a crystal, the broken translational symmetry creates topological surface states, so-called Fermi arcs, which have no counterparts in high-energy physics or conventional condensed matter systems. Here we present Shubnikov-de Haas oscillations in focused-ion-beam-prepared microstructures of Cd3As2 that are consistent with the theoretically predicted 'Weyl orbits', a kind of cyclotron motion that weaves together Fermi-arc and chiral bulk states. In contrast to conventional cyclotron orbits, this motion is driven by the transfer of chirality from one Weyl node to another, rather than momentum transfer of the Lorentz force. Our observations provide evidence for direct access to the topological properties of charge in a transport experiment, a first step towards their potential application.

7.
Nat Mater ; 19(9): 1036, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32704158

RESUMO

An amendment to this paper has been published and can be accessed via a link at the top of the paper.

8.
Nat Mater ; 19(4): 474, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-31723257

RESUMO

An amendment to this paper has been published and can be accessed via a link at the top of the paper.

9.
Nat Mater ; 19(2): 153-157, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31685945

RESUMO

Advances in controlling the correlated behaviour of transition metal dichalcogenides have opened a new frontier of many-body physics in two dimensions. A field where these materials have yet to make a deep impact is antiferromagnetic spintronics-a relatively new research direction promising technologies with fast switching times, insensitivity to magnetic perturbations and reduced cross-talk1-3. Here, we present measurements on the intercalated transition metal dichalcogenide Fe1/3NbS2 that exhibits antiferromagnetic ordering below 42 K (refs. 4,5). We find that remarkably low current densities of the order of 104 A cm-2 can reorient the magnetic order, which can be detected through changes in the sample resistance, demonstrating its use as an electronically accessible antiferromagnetic switch. Fe1/3NbS2 is part of a larger family of magnetically intercalated transition metal dichalcogenides, some of which may exhibit switching at room temperature, forming a platform from which to build tuneable antiferromagnetic spintronic devices6,7.

10.
Nat Mater ; 19(10): 1062-1067, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32424369

RESUMO

Nematic order is the breaking of rotational symmetry in the presence of translational invariance. While originally defined in the context of liquid crystals, the concept of nematic order has arisen in crystalline matter with discrete rotational symmetry, most prominently in the tetragonal Fe-based superconductors where the parent state is four-fold symmetric. In this case the nematic director takes on only two directions, and the order parameter in such 'Ising-nematic' systems is a simple scalar. Here, using a spatially resolved optical polarimetry technique, we show that a qualitatively distinct nematic state arises in the triangular lattice antiferromagnet Fe1/3NbS2. The crucial difference is that the nematic order on the triangular lattice is a [Formula: see text] or three-state Potts-nematic order parameter. As a consequence, the anisotropy axes of response functions such as the resistivity tensor can be continuously reoriented by external perturbations. This discovery lays the groundwork for devices that exploit analogies with nematic liquid crystals.

11.
Nature ; 520(7549): 650-5, 2015 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-25901686

RESUMO

Electron valley, a degree of freedom that is analogous to spin, can lead to novel topological phases in bilayer graphene. A tunable bandgap can be induced in bilayer graphene by an external electric field, and such gapped bilayer graphene is predicted to be a topological insulating phase protected by no-valley mixing symmetry, featuring quantum valley Hall effects and chiral edge states. Observation of such chiral edge states, however, is challenging because inter-valley scattering is induced by atomic-scale defects at real bilayer graphene edges. Recent theoretical work has shown that domain walls between AB- and BA-stacked bilayer graphene can support protected chiral edge states of quantum valley Hall insulators. Here we report an experimental observation of ballistic (that is, with no scattering of electrons) conducting channels at bilayer graphene domain walls. We employ near-field infrared nanometre-scale microscopy (nanoscopy) to image in situ bilayer graphene layer-stacking domain walls on device substrates, and we fabricate dual-gated field effect transistors based on the domain walls. Unlike single-domain bilayer graphene, which shows gapped insulating behaviour under a vertical electrical field, bilayer graphene domain walls feature one-dimensional valley-polarized conducting channels with a ballistic length of about 400 nanometres at 4 kelvin. Such topologically protected one-dimensional chiral states at bilayer graphene domain walls open up opportunities for exploring unique topological phases and valley physics in graphene.

12.
Phys Rev Lett ; 121(19): 197002, 2018 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-30468585

RESUMO

The phenomenon of T-linear resistivity commonly observed in a number of strange metals has been widely seen as evidence for the breakdown of the quasiparticle picture of metals. This study shows that a recently discovered H/T scaling relationship in the magnetoresistance of the strange metal BaFe_{2}(As_{1-x}P_{x})_{2} is independent of the relative orientations of current and magnetic field. Rather, its magnitude and form depend only on the orientation of the magnetic field with respect to a single crystallographic axis: the direction perpendicular to the magnetic iron layers. This finding suggests that the magnetotransport scaling does not originate from the conventional averaging or orbital velocity of quasiparticles as they traverse a Fermi surface, but rather from dissipation arising from two-dimensional correlations.

13.
Phys Rev Lett ; 121(2): 027001, 2018 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-30085755

RESUMO

We present the strain and temperature dependence of an anomalous nematic phase in optimally doped BaFe_{2}(As,P)_{2}. Polarized ultrafast optical measurements reveal broken fourfold rotational symmetry in a temperature range above T_{c} in which bulk probes do not detect a phase transition. Using ultrafast microscopy, we find that the magnitude and sign of this nematicity vary on a 50-100 µm length scale, and the temperature at which it onsets ranges from 40 K near a domain boundary to 60 K deep within a domain. Scanning Laue microdiffraction maps of local strain at room temperature indicate that the nematic order appears most strongly in regions of weak, isotropic strain. These results indicate that nematic order arises in a genuine phase transition rather than by enhancement of local anisotropy by a strong nematic susceptibility. We interpret our results in the context of a proposed surface nematic phase.

14.
Proc Natl Acad Sci U S A ; 110(1): 64-9, 2013 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-23248317

RESUMO

Charge and spin density waves, periodic modulations of the electron, and magnetization densities, respectively, are among the most abundant and nontrivial low-temperature ordered phases in condensed matter. The ordering direction is widely believed to result from the Fermi surface topology. However, several recent studies indicate that this common view needs to be supplemented. Here, we show how an enhanced electron-lattice interaction can contribute to or even determine the selection of the ordering vector in the model charge density wave system ErTe(3). Our joint experimental and theoretical study allows us to establish a relation between the selection rules of the electronic light scattering spectra and the enhanced electron-phonon coupling in the vicinity of band degeneracy points. This alternative proposal for charge density wave formation may be of general relevance for driving phase transitions into other broken-symmetry ground states, particularly in multiband systems, such as the iron-based superconductors.


Assuntos
Fenômenos Eletromagnéticos , Elétrons , Magnetismo , Transição de Fase/efeitos da radiação , Érbio/química , Análise Espectral Raman , Telúrio/química
15.
Nano Lett ; 12(2): 1107-11, 2012 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-22263839

RESUMO

Studying the surface states of Bi(2)Se(3) and Bi(2)Te(3) topological insulators has proven challenging due to the high bulk carrier density that masks the surface states. Ternary compound Bi(2)(Se(x)Te(1-x))(3) may present a solution to the current materials challenge by lowering the bulk carrier mobility significantly. Here, we synthesized Bi(2)(Se(x)Te(1-x))(3) nanoribbons and nanoplates via vapor-liquid-solid and vapor-solid growth methods where the atomic ratio x was controlled by the molecular ratio of Bi(2)Se(3) to Bi(2)Te(3) in the source mixture and ranged between 0 and 1. For the whole range of x, the ternary nanostructures are single crystalline without phase segregation, and their carrier densities decrease with x. However, the lowest electron density is still high (~10(19) cm(-3)) and the mobility low, suggesting that the majority of these carriers may come from impurity states. Despite the high carrier density, weak antilocalization (WAL) is clearly observed. Angle-dependent magnetoconductance study shows that an appropriate magnetic field range is critical to capture a true, two-dimensional (2D) WAL effect, and a fit to the 2D localization theory gives α of -0.97, suggesting its origin may be the topological surface states. The power law dependence of the dephasing length on temperature is ~T(-0.49) within the appropriate field range (~0.3 T), again reflecting the 2D nature of the WAL. Careful analysis on WAL shows how the surface states and the bulk/impurity states may interact with each other.


Assuntos
Bismuto/química , Nanoestruturas/química , Selênio/química , Telúrio/química , Tamanho da Partícula , Propriedades de Superfície
16.
Nat Commun ; 14(1): 4691, 2023 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-37542056

RESUMO

Antiferromagnetic spintronics is an emerging area of quantum technologies that leverage the coupling between spin and orbital degrees of freedom in exotic materials. Spin-orbit interactions allow spin or angular momentum to be injected via electrical stimuli to manipulate the spin texture of a material, enabling the storage of information and energy. In general, the physical process is intrinsically local: spin is carried by an electrical current, imparted into the magnetic system, and the spin texture will then rotate in the region of current flow. In this study, we show that spin information can be transported and stored "non-locally" in the material FexNbS2. We propose that collective modes can manipulate the spin texture away from the flowing current, an effect amplified by strong magnetoelastic coupling of the ordered state. This suggests a novel way to store and transport spin information in strongly spin-orbit coupled magnetic systems.

17.
Science ; 375(6577): 198-202, 2022 01 14.
Artigo em Inglês | MEDLINE | ID: mdl-35025637

RESUMO

Magnetic effects of lanthanide bonding Lanthanide coordination compounds have attracted attention for their persistent magnetic properties near liquid nitrogen temperature, well above alternative molecular magnets. Gould et al. report that introducing metal-metal bonding can enhance coercivity. Reduction of iodide-bridged terbium or dysprosium dimers resulted in a single electron bond between the metals, which enforced alignment of the other valence electrons. The resultant coercive fields exceeded 14 tesla below 50 and 60 kelvin for the terbium and dysprosium compounds, respectively. ­JSY

18.
Science ; 375(6576): 76-81, 2022 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-34855511

RESUMO

The study of quantum phase transitions that are not clearly associated with broken symmetry is a major effort in condensed matter physics, particularly in regard to the problem of high-temperature superconductivity, for which such transitions are thought to underlie the mechanism of superconductivity itself. Here we argue that the putative quantum critical point in the prototypical unconventional superconductor CeCoIn5 is characterized by the delocalization of electrons in a transition that connects two Fermi surfaces of different volumes, with no apparent broken symmetry. Drawing on established theory of f-electron metals, we discuss an interpretation for such a transition that involves the fractionalization of spin and charge, a model that effectively describes the anomalous transport behavior we measured for the Hall effect.

19.
Phys Rev Lett ; 106(6): 067001, 2011 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-21405485

RESUMO

We measure the penetration depth λab(T) in Ba(Fe(1-x)Co(x))(2)As(2) using local techniques that do not average over the sample. The superfluid density ρs(T) ≡ 1/λab(T)2 has three main features. First, ρs (T = 0) falls sharply on the underdoped side of the dome. Second, λab(T) is flat at low T at optimal doping, indicating fully gapped superconductivity, but varies more strongly in underdoped and overdoped samples, consistent with either a power law or a small second gap. Third, ρs (T) varies steeply near Tc for optimal and underdoping. These observations are consistent with an interplay between magnetic and superconducting phases.


Assuntos
Arsênio/química , Bário/química , Cobalto/química , Ferro/química , Temperatura
20.
Sci Adv ; 7(2)2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33523993

RESUMO

The theory behind the electrical switching of antiferromagnets is premised on the existence of a well-defined broken symmetry state that can be rotated to encode information. A spin glass is, in many ways, the antithesis of this state, characterized by an ergodic landscape of nearly degenerate magnetic configurations, choosing to freeze into a distribution of these in a manner that is seemingly bereft of information. Here, we show that the coexistence of spin glass and antiferromagnetic order allows a novel mechanism to facilitate the switching of the antiferromagnet Fe1/3 + δNbS2, rooted in the electrically stimulated collective winding of the spin glass. The local texture of the spin glass opens an anisotropic channel of interaction that can be used to rotate the equilibrium orientation of the antiferromagnetic state. Manipulating antiferromagnetic spin textures using a spin glass' collective dynamics opens the field of antiferromagnetic spintronics to new material platforms with complex magnetic textures.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA