RESUMO
Nonsyndromic orofacial clefts (NSOFCs) represent a large proportion (70%-80%) of all OFCs. They can be broadly categorized into nonsyndromic cleft lip with or without cleft palate (NSCL/P) and nonsyndromic cleft palate only (NSCPO). Although NSCL/P and NSCPO are considered etiologically distinct, recent evidence suggests the presence of shared genetic risks. Thus, we investigated the genetic overlap between NSCL/P and NSCPO using African genome-wide association study (GWAS) data on NSOFCs. These data consist of 814 NSCL/P, 205 NSCPO cases, and 2159 unrelated controls.â¯We generated common single-nucleotide variants (SNVs) association summary statistics separately for each phenotype (NSCL/P and NSCPO) under an additive genetic model. Subsequently, we employed the pleiotropic analysis under the composite null (PLACO) method to test for genetic overlap. Our analysis identified two loci with genome-wide significance (rs181737795 [p = 2.58E-08] and rs2221169 [p = 4.5E-08]) and one locus with marginal significance (rs187523265 [p = 5.22E-08]). Using mouse transcriptomics data and information from genetic phenotype databases, we identified MDN1, MAP3k7, KMT2A, ARCN1, and VADC2 as top candidate genes for the associated SNVs. These findings enhance our understanding of genetic variants associated with NSOFCs and identify potential candidate genes for further exploration.
Assuntos
Fenda Labial , Fissura Palatina , Feminino , Humanos , Masculino , Camundongos , População Negra/genética , Estudos de Casos e Controles , Fenda Labial/genética , Fissura Palatina/genética , Predisposição Genética para Doença , Estudo de Associação Genômica Ampla , Fenótipo , Polimorfismo de Nucleotídeo Único , AnimaisRESUMO
To expedite gene discovery in eye development and its associated defects, we previously developed a bioinformatics resource-tool iSyTE (integrated Systems Tool for Eye gene discovery). However, iSyTE is presently limited to lens tissue and is predominantly based on transcriptomics datasets. Therefore, to extend iSyTE to other eye tissues on the proteome level, we performed high-throughput tandem mass spectrometry (MS/MS) on mouse embryonic day (E)14.5 retina and retinal pigment epithelium combined tissue and identified an average of 3300 proteins per sample (n = 5). High-throughput expression profiling-based gene discovery approaches-involving either transcriptomics or proteomics-pose a key challenge of prioritizing candidates from thousands of RNA/proteins expressed. To address this, we used MS/MS proteome data from mouse whole embryonic body (WB) as a reference dataset and performed comparative analysis-termed "in silico WB-subtraction"-with the retina proteome dataset. In silico WB-subtraction identified 90 high-priority proteins with retina-enriched expression at stringency criteria of ≥ 2.5 average spectral counts, ≥ 2.0 fold-enrichment, false discovery rate < 0.01. These top candidates represent a pool of retina-enriched proteins, several of which are associated with retinal biology and/or defects (e.g., Aldh1a1, Ank2, Ank3, Dcn, Dync2h1, Egfr, Ephb2, Fbln5, Fbn2, Hras, Igf2bp1, Msi1, Rbp1, Rlbp1, Tenm3, Yap1, etc.), indicating the effectiveness of this approach. Importantly, in silico WB-subtraction also identified several new high-priority candidates with potential regulatory function in retina development. Finally, proteins exhibiting expression or enriched-expression in the retina are made accessible in a user-friendly manner at iSyTE ( https://research.bioinformatics.udel.edu/iSyTE/ ), to allow effective visualization of this information and facilitate eye gene discovery.
Assuntos
Oftalmopatias , Epitélio Pigmentado da Retina , Animais , Camundongos , Epitélio Pigmentado da Retina/metabolismo , Espectrometria de Massas em Tandem , Proteoma/genética , Proteoma/metabolismo , Proteômica , Retina/metabolismo , Perfilação da Expressão Gênica , Estudos de Associação GenéticaRESUMO
Mutations of the RNA granule component TDRD7 (OMIM: 611258) cause pediatric cataract. We applied an integrated approach to uncover the molecular pathology of cataract in Tdrd7-/- mice. Early postnatal Tdrd7-/- animals precipitously develop cataract suggesting a global-level breakdown/misregulation of key cellular processes. High-throughput RNA sequencing integrated with iSyTE-bioinformatics analysis identified the molecular chaperone and cytoskeletal modulator, HSPB1, among high-priority downregulated candidates in Tdrd7-/- lens. A protein fluorescence two-dimensional difference in-gel electrophoresis (2D-DIGE)-coupled mass spectrometry screen also identified HSPB1 downregulation, offering independent support for its importance to Tdrd7-/- cataractogenesis. Lens fiber cells normally undergo nuclear degradation for transparency, posing a challenge: how is their cell morphology, also critical for transparency, controlled post-nuclear degradation? HSPB1 functions in cytoskeletal maintenance, and its reduction in Tdrd7-/- lens precedes cataract, suggesting cytoskeletal defects may contribute to Tdrd7-/- cataract. In agreement, scanning electron microscopy (SEM) revealed abnormal fiber cell morphology in Tdrd7-/- lenses. Further, abnormal phalloidin and wheat germ agglutinin (WGA) staining of Tdrd7-/- fiber cells, particularly those exhibiting nuclear degradation, reveals distinct regulatory mechanisms control F-actin cytoskeletal and/or membrane maintenance in post-organelle degradation maturation stage fiber cells. Indeed, RNA immunoprecipitation identified Hspb1 mRNA in wild-type lens lysate TDRD7-pulldowns, and single-molecule RNA imaging showed co-localization of TDRD7 protein with cytoplasmic Hspb1 mRNA in differentiating fiber cells, suggesting that TDRD7-ribonucleoprotein complexes may be involved in optimal buildup of key factors. Finally, Hspb1 knockdown in Xenopus causes eye/lens defects. Together, these data uncover TDRD7's novel upstream role in elevation of stress-responsive chaperones for cytoskeletal maintenance in post-nuclear degradation lens fiber cells, perturbation of which causes early-onset cataracts.
Assuntos
Catarata/genética , Proteínas do Olho/genética , Proteínas de Choque Térmico/genética , Chaperonas Moleculares/genética , Ribonucleoproteínas/genética , Animais , Catarata/patologia , Núcleo Celular/genética , Citoesqueleto/genética , Modelos Animais de Doenças , Oftalmopatias , Humanos , Cristalino/metabolismo , Cristalino/patologia , Camundongos , Microscopia Eletrônica de Varredura , Mutação/genética , RNA Mensageiro/genética , Xenopus laevis/genéticaRESUMO
OBJECTIVES: Cleft lip with/without cleft palate and cleft palate only is congenital birth defects where the upper lip and/or palate fail to fuse properly during embryonic facial development. Affecting ~1.2/1000 live births worldwide, these orofacial clefts impose significant social and financial burdens on affected individuals and their families. Orofacial clefts have a complex etiology resulting from genetic variants combined with environmental covariates. Recent genome-wide association studies and whole-exome sequencing for orofacial clefts identified significant genetic associations and variants in several genes. Of these, we investigated the role of common/rare variants in SHH, RORA, MRPL53, ACVR1, and GDF11. MATERIALS AND METHODS: We sequenced these five genes in 1255 multi-ethnic cleft lip with/without palate and cleft palate only samples in order to find variants that may provide potential explanations for the missing heritability of orofacial clefts. Rare and novel variants were further analyzed using in silico predictive tools. RESULTS: Ninteen total variants of interest were found, with variant types including stop-gain, missense, synonymous, intronic, and splice-site variants. Of these, 3 novel missense variants were found, one in SHH, one in RORA, and one in GDF11. CONCLUSION: This study provides evidence that variants in SHH, RORA, MRPL53, ACVR1, and GDF11 may contribute to risk of orofacial clefts in various populations.
Assuntos
Fenda Labial , Fissura Palatina , Proteínas Morfogenéticas Ósseas , Fenda Labial/genética , Fissura Palatina/genética , Estudo de Associação Genômica Ampla , Fatores de Diferenciação de Crescimento/genética , HumanosRESUMO
In this study, we investigated the role of the transcription factor Six2 in palate development. Six2 was selected using the SysFACE tool to predict genes from the 2p21 locus, a region associated with clefting in humans by GWAS, that are likely to be involved in palatogenesis. We functionally validated the predicted role of Six2 in palatogenesis by showing that 22% of Six2 null embryos develop cleft palate. Six2 contributes to palatogenesis by promoting mesenchymal cell proliferation and regulating bone formation. The clefting phenotype in Six2-/- embryos is similar to Pax9 null embryos, so we examined the functional relationship of these two genes. Mechanistically, SIX2 binds to a PAX9 5' upstream regulatory element and activates PAX9 expression. In addition, we identified a human SIX2 coding variant (p.Gly264Glu) in a proband with cleft palate. We show this missense mutation affects the stability of the SIX2 protein and leads to decreased PAX9 expression. The low penetrance of clefting in the Six2 null mouse combined with the mutation in one patient with cleft palate underscores the potential combinatorial interactions of other genes in clefting. Our study demonstrates that Six2 interacts with the developmental gene regulatory network in the developing palate.
Assuntos
Proteínas de Homeodomínio/metabolismo , Fator de Transcrição PAX9/genética , Fatores de Transcrição/metabolismo , Animais , Fissura Palatina/embriologia , Fissura Palatina/genética , Anormalidades Craniofaciais/embriologia , Feminino , Regulação da Expressão Gênica no Desenvolvimento/genética , Genes Homeobox , Proteínas de Homeodomínio/genética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Morfogênese , Proteínas do Tecido Nervoso/metabolismo , Osteogênese , Fator de Transcrição PAX9/metabolismo , Fatores de Transcrição Box Pareados , Palato/metabolismo , Transdução de Sinais/genética , Fatores de Transcrição/genéticaRESUMO
Non-syndromic cleft lip with or without cleft palate (NS-CL/P) is one of the most common human birth defects and is generally considered a complex trait. Despite numerous loci identified by genome-wide association studies, the effect sizes of common variants are relatively small, with much of the presumed genetic contribution remaining elusive. We report exome-sequencing results in 209 people from 72 multi-affected families with pedigree structures consistent with autosomal-dominant inheritance and variable penetrance. Herein, pathogenic variants are described in four genes encoding components of the p120-catenin complex (CTNND1, PLEKHA7, PLEKHA5) and an epithelial splicing regulator (ESRP2), in addition to the known CL/P-associated gene, CDH1, which encodes E-cadherin. The findings were also validated in a second cohort of 497 people with NS-CL/P, comprising small families and singletons with pathogenic variants in these genes identified in 14% of multi-affected families and 2% of the replication cohort of smaller families. Enriched expression of each gene/protein in human and mouse embryonic oro-palatal epithelia, demonstration of functional impact of CTNND1 and ESRP2 variants, and recapitulation of the CL/P spectrum in Ctnnd1 knockout mice support a causative role in CL/P pathogenesis. These data show that primary defects in regulators of epithelial cell adhesion are the most significant contributors to NS-CL/P identified to date and that inherited and de novo single gene variants explain a substantial proportion of NS-CL/P.
Assuntos
Caderinas/genética , Cateninas/genética , Fenda Labial/genética , Fissura Palatina/genética , Predisposição Genética para Doença , Mutação/genética , Alelos , Sequência de Aminoácidos , Animais , Biotinilação , Epitélio/metabolismo , Epitélio/patologia , Feminino , Deleção de Genes , Humanos , Lactente , Recém-Nascido , Masculino , Camundongos , Palato/patologia , Linhagem , Síndrome , Sequenciamento do Exoma , delta CateninaRESUMO
Opacification of the ocular lens, termed cataract, is a common cause of blindness. To become transparent, lens fiber cells undergo degradation of their organelles, including their nuclei, presenting a fundamental question: does signaling/transcription sufficiently explain differentiation of cells progressing toward compromised transcriptional potential? We report that a conserved RNA-binding protein Celf1 post-transcriptionally controls key genes to regulate lens fiber cell differentiation. Celf1-targeted knockout mice and celf1-knockdown zebrafish and Xenopus morphants have severe eye defects/cataract. Celf1 spatiotemporally down-regulates the cyclin-dependent kinase (Cdk) inhibitor p27Kip1 by interacting with its 5' UTR and mediating translation inhibition. Celf1 deficiency causes ectopic up-regulation of p21Cip1. Further, Celf1 directly binds to the mRNA of the nuclease Dnase2b to maintain its high levels. Together these events are necessary for Cdk1-mediated lamin A/C phosphorylation to initiate nuclear envelope breakdown and DNA degradation in fiber cells. Moreover, Celf1 controls alternative splicing of the membrane-organization factor beta-spectrin and regulates F-actin-crosslinking factor Actn2 mRNA levels, thereby controlling fiber cell morphology. Thus, we illustrate new Celf1-regulated molecular mechanisms in lens development, suggesting that post-transcriptional regulatory RNA-binding proteins have evolved conserved functions to control vertebrate oculogenesis.
Assuntos
Proteínas CELF1/fisiologia , Núcleo Celular/metabolismo , Inibidor de Quinase Dependente de Ciclina p27/genética , Endodesoxirribonucleases/genética , Cristalino/crescimento & desenvolvimento , Proteínas de Ligação a RNA/fisiologia , Proteínas de Xenopus/fisiologia , Proteínas de Peixe-Zebra/fisiologia , Animais , Linhagem Celular , Regulação da Expressão Gênica , Cristalino/citologia , Cristalino/metabolismo , Camundongos , Xenopus laevis , Peixe-ZebraRESUMO
Phenotypic heterogeneity is a hallmark of complex traits, and genetic studies of such traits may focus on them as a single diagnostic entity or by analyzing specific components. For example, in orofacial clefting (OFC), three subtypes-cleft lip (CL), cleft lip and palate (CLP), and cleft palate (CP) have been studied separately and in combination. To further dissect the genetic architecture of OFCs and how a given associated locus may be contributing to distinct subtypes of a trait we developed a framework for quantifying and interpreting evidence of subtype-specific or shared genetic effects in complex traits. We applied this technique to create a "cleft map" of the association of 30 genetic loci with three OFC subtypes. In addition to new associations, we found loci with subtype-specific effects (e.g., GRHL3 [CP], WNT5A [CLP]), as well as loci associated with two or all three subtypes. We cross-referenced these results with mouse craniofacial gene expression datasets, which identified additional promising candidate genes. However, we found no strong correlation between OFC subtypes and expression patterns. In aggregate, the cleft map revealed that neither subtype-specific nor shared genetic effects operate in isolation in OFC architecture. Our approach can be easily applied to any complex trait with distinct phenotypic subgroups.
Assuntos
Encéfalo/anormalidades , Fenda Labial/classificação , Fenda Labial/genética , Fissura Palatina/classificação , Fissura Palatina/genética , Loci Gênicos , Marcadores Genéticos , Testes Genéticos/métodos , Estudo de Associação Genômica Ampla/métodos , Fenótipo , Encéfalo/patologia , Fenda Labial/patologia , Fissura Palatina/patologia , Humanos , TranscriptomaRESUMO
While the bioinformatics resource-tool iSyTE (integrated Systems Tool for Eye gene discovery) effectively identifies human cataract-associated genes, it is currently based on just transcriptome data, and thus, it is necessary to include protein-level information to gain greater confidence in gene prioritization. Here, we expand iSyTE through development of a novel proteome-based resource on the lens and demonstrate its utility in cataract gene discovery. We applied high-throughput tandem mass spectrometry (MS/MS) to generate a global protein expression profile of mouse lens at embryonic day (E)14.5, which identified 2371 lens-expressed proteins. A major challenge of high-throughput expression profiling is identification of high-priority candidates among the thousands of expressed proteins. To address this problem, we generated new MS/MS proteome data on mouse whole embryonic body (WB). WB proteome was then used as a reference dataset for performing "in silico WB-subtraction" comparative analysis with the lens proteome, which effectively identified 422 proteins with lens-enriched expression at ≥ 2.5 average spectral counts, ≥ 2.0 fold enrichment (FDR < 0.01) cut-off. These top 20% candidates represent a rich pool of high-priority proteins in the lens including known human cataract-linked genes and many new potential regulators of lens development and homeostasis. This rich information is made publicly accessible through iSyTE (https://research.bioinformatics.udel.edu/iSyTE/), which enables user-friendly visualization of promising candidates, thus making iSyTE a comprehensive tool for cataract gene discovery.
Assuntos
Biomarcadores/metabolismo , Catarata/metabolismo , Simulação por Computador , Proteínas do Olho/metabolismo , Cristalino/metabolismo , Proteoma/metabolismo , Espectrometria de Massas em Tandem/métodos , Animais , Catarata/genética , Catarata/patologia , Biologia Computacional , Proteínas do Olho/genética , Perfilação da Expressão Gênica , Humanos , Cristalino/embriologia , Camundongos , Camundongos Endogâmicos C57BL , Proteoma/análise , TranscriptomaRESUMO
BACKGROUND: Pathogenic PLOD3 variants cause a connective tissue disorder (CTD) that has been described rarely. We further characterise this CTD and propose a clinical diagnostic label to improve recognition and diagnosis of PLOD3-related disease. METHODS: Reported PLOD3 phenotypes were compared with known CTDs utilising data from three further individuals from a consanguineous family with a homozygous PLOD3 c.809C>T; p.(Pro270Leu) variant. PLOD3 mRNA expression in the developing embryo was analysed for tissue-specific localisation. Mouse microarray expression data were assessed for phylogenetic gene expression similarities across CTDs with overlapping clinical features. RESULTS: Key clinical features included ocular abnormalities with risk for retinal detachment, sensorineural hearing loss, reduced palmar creases, finger contractures, prominent knees, scoliosis, low bone mineral density, recognisable craniofacial dysmorphisms, developmental delay and risk for vascular dissection. Collated clinical features showed most overlap with Stickler syndrome with variable features of Ehlers-Danlos syndrome (EDS) and epidermolysis bullosa (EB). Human lysyl hydroxylase 3/PLOD3 expression was localised to the developing cochlea, eyes, skin, forelimbs, heart and cartilage, mirroring the clinical phenotype of this disorder. CONCLUSION: These data are consistent with pathogenic variants in PLOD3 resulting in a clinically distinct Stickler-like syndrome with vascular complications and variable features of EDS and EB. Early identification of PLOD3 variants would improve monitoring for comorbidities and may avoid serious adverse ocular and vascular outcomes.
Assuntos
Artrite/diagnóstico , Artrite/genética , Doenças do Tecido Conjuntivo/diagnóstico , Doenças do Tecido Conjuntivo/genética , Estudos de Associação Genética , Predisposição Genética para Doença , Variação Genética , Perda Auditiva Neurossensorial/diagnóstico , Perda Auditiva Neurossensorial/genética , Pró-Colágeno-Lisina 2-Oxoglutarato 5-Dioxigenase/genética , Descolamento Retiniano/diagnóstico , Descolamento Retiniano/genética , Doenças Vasculares/diagnóstico , Adolescente , Adulto , Animais , Artrite/complicações , Hibridização Genômica Comparativa , Doenças do Tecido Conjuntivo/complicações , Modelos Animais de Doenças , Fácies , Feminino , Expressão Gênica , Estudos de Associação Genética/métodos , Perda Auditiva Neurossensorial/complicações , Humanos , Imuno-Histoquímica , Masculino , Camundongos , Modelos Moleculares , Mutação , Linhagem , Fenótipo , Filogenia , Pró-Colágeno-Lisina 2-Oxoglutarato 5-Dioxigenase/química , Conformação Proteica , Descolamento Retiniano/complicações , Relação Estrutura-Atividade , Doenças Vasculares/etiologia , Sequenciamento do Exoma , Adulto JovemRESUMO
Although successful in identifying new cataract-linked genes, the previous version of the database iSyTE (integrated Systems Tool for Eye gene discovery) was based on expression information on just three mouse lens stages and was functionally limited to visualization by only UCSC-Genome Browser tracks. To increase its efficacy, here we provide an enhanced iSyTE version 2.0 (URL: http://research.bioinformatics.udel.edu/iSyTE) based on well-curated, comprehensive genome-level lens expression data as a one-stop portal for the effective visualization and analysis of candidate genes in lens development and disease. iSyTE 2.0 includes all publicly available lens Affymetrix and Illumina microarray datasets representing a broad range of embryonic and postnatal stages from wild-type and specific gene-perturbation mouse mutants with eye defects. Further, we developed a new user-friendly web interface for direct access and cogent visualization of the curated expression data, which supports convenient searches and a range of downstream analyses. The utility of these new iSyTE 2.0 features is illustrated through examples of established genes associated with lens development and pathobiology, which serve as tutorials for its application by the end-user. iSyTE 2.0 will facilitate the prioritization of eye development and disease-linked candidate genes in studies involving transcriptomics or next-generation sequencing data, linkage analysis and GWAS approaches.
Assuntos
Catarata/genética , Bases de Dados Genéticas , Proteínas do Olho/genética , Expressão Gênica , Estudos de Associação Genética/métodos , Animais , Catarata/embriologia , Catarata/metabolismo , Conjuntos de Dados como Assunto , Modelos Animais de Doenças , Proteínas do Olho/biossíntese , Previsões , Perfilação da Expressão Gênica , Redes Reguladoras de Genes , Estudo de Associação Genômica Ampla , Humanos , Cristalino/embriologia , Cristalino/crescimento & desenvolvimento , Cristalino/metabolismo , Camundongos , Camundongos Mutantes , Análise de Sequência com Séries de Oligonucleotídeos , Interface Usuário-ComputadorRESUMO
Cleft lip with or without cleft palate (CL/P) is generally viewed as a complex trait with multiple genetic and environmental contributions. In 70% of cases, CL/P presents as an isolated feature and/or deemed nonsyndromic. In the remaining 30%, CL/P is associated with multisystem phenotypes or clinically recognizable syndromes, many with a monogenic basis. Here we report the identification, via exome sequencing, of likely pathogenic variants in two genes that encode interacting proteins previously only linked to orofacial clefting in mouse models. A variant in GDF11 (encoding growth differentiation factor 11), predicting a p.(Arg298Gln) substitution at the Furin protease cleavage site, was identified in one family that segregated with CL/P and both rib and vertebral hypersegmentation, mirroring that seen in Gdf11 knockout mice. In the second family in which CL/P was the only phenotype, a mutation in FST (encoding the GDF11 antagonist, Follistatin) was identified that is predicted to result in a p.(Cys56Tyr) substitution in the region that binds GDF11. Functional assays demonstrated a significant impact of the specific mutated amino acids on FST and GDF11 function and, together with embryonic expression data, provide strong evidence for the importance of GDF11 and Follistatin in the regulation of human orofacial development.
Assuntos
Proteínas Morfogenéticas Ósseas/genética , Fenda Labial/diagnóstico , Fenda Labial/genética , Folistatina/metabolismo , Estudos de Associação Genética , Predisposição Genética para Doença , Fatores de Diferenciação de Crescimento/genética , Mutação , Alelos , Substituição de Aminoácidos , Proteínas Morfogenéticas Ósseas/antagonistas & inibidores , Linhagem Celular , Biologia Computacional/métodos , Folistatina/química , Estudos de Associação Genética/métodos , Genômica/métodos , Fatores de Diferenciação de Crescimento/antagonistas & inibidores , Humanos , Modelos Moleculares , Linhagem , Conformação Proteica , Sequenciamento do ExomaRESUMO
FGFR signaling is critical to development and disease pathogenesis, initiating phosphorylation-driven signaling cascades, notably the RAS-RAF-MEK-ERK and PI3 K-AKT cascades. PTEN antagonizes FGFR signaling by reducing AKT and ERK activation. Mouse lenses lacking FGFR2 exhibit microphakia and reduced ERK and AKT phosphorylation, widespread apoptosis, and defective lens fiber cell differentiation. In contrast, simultaneous deletion of both Fgfr2 and Pten restores ERK and AKT activation levels as well as lens size, cell survival and aspects of fiber cell differentiation; however, the molecular basis of this "rescue" remains undefined. We performed transcriptomic analysis by RNA sequencing of mouse lenses with conditional deletion of Fgfr2, Pten or both Fgfr2 and Pten, which reveal new molecular mechanisms that uncover how FGFR2 and PTEN signaling interact during development. The FGFR2-deficient lens transcriptome demonstrates overall loss of fiber cell identity with deregulated expression of 1448 genes. We find that ~ 60% of deregulated genes return to normal expression levels in lenses lacking both Fgfr2 and Pten. Further, application of customized filtering parameters to these RNA-seq data sets identified 68 high-priority candidate genes. Bioinformatics analyses showed that the cis-binding motif of a high-priority homeodomain transcription factor, NKX6-1, was present in the putative promoters of ~ 78% of these candidates. Finally, biochemical reporter assays demonstrate that NKX6-1 activated the expression of the high-priority candidate Rasgrp1, a RAS-activating protein. Together, these data define a novel regulatory module in which NKX6-1 directly activates Rasgrp1 expression to restore the balance of ERK and AKT activation, thus providing new insights into alternate regulation of FGFR downstream events.
Assuntos
Regulação da Expressão Gênica , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Proteínas de Homeodomínio/metabolismo , Microftalmia/prevenção & controle , PTEN Fosfo-Hidrolase/deficiência , Receptor Tipo 2 de Fator de Crescimento de Fibroblastos/deficiência , Transcriptoma , Animais , Diferenciação Celular , Proliferação de Células , Fatores de Troca do Nucleotídeo Guanina/genética , Sequenciamento de Nucleotídeos em Larga Escala , Proteínas de Homeodomínio/genética , Camundongos , Camundongos Knockout , Microftalmia/etiologia , Microftalmia/patologia , Fosforilação , Transdução de SinaisRESUMO
Lens epithelial cells differentiate into lens fibers (LFs) in response to a fibroblast growth factor (FGF) gradient. This cell fate decision requires the transcription factor Prox1, which has been hypothesized to promote cell cycle exit in differentiating LF cells. However, we find that conditional deletion of Prox1 from mouse lenses results in a failure in LF differentiation despite maintenance of normal cell cycle exit. Instead, RNA-seq demonstrated that Prox1 functions as a global regulator of LF cell gene expression. Intriguingly, Prox1 also controls the expression of fibroblast growth factor receptors (FGFRs) and can bind to their promoters, correlating with decreased downstream signaling through MAPK and AKT in Prox1 mutant lenses. Further, culturing rat lens explants in FGF increased their expression of Prox1, and this was attenuated by the addition of inhibitors of MAPK. Together, these results describe a novel feedback loop required for lens differentiation and morphogenesis, whereby Prox1 and FGFR signaling interact to mediate LF differentiation in response to FGF.
Assuntos
Proteínas de Homeodomínio/metabolismo , Cristalino/citologia , Cristalino/metabolismo , Receptores de Fatores de Crescimento de Fibroblastos/metabolismo , Proteínas Supressoras de Tumor/metabolismo , Animais , Diferenciação Celular/efeitos dos fármacos , Diferenciação Celular/genética , Fatores de Crescimento de Fibroblastos/farmacologia , Proteínas de Homeodomínio/genética , Camundongos , Camundongos Endogâmicos C57BL , Receptores de Fatores de Crescimento de Fibroblastos/genética , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/fisiologia , Proteínas Supressoras de Tumor/genéticaRESUMO
Cataract-associated gene discovery in human and animal models have informed on key aspects of human lens development, homeostasis and pathology. Additionally, in vitro models such as the culture of permanent human lens epithelium-derived cell lines (LECs) have also been utilized to understand the molecular biology of lens cells. However, these resources remain uncharacterized, specifically regarding their global gene expression and suitability to model lens cell biology. Therefore, we sought to molecularly characterize gene expression in the human LEC, SRA01/04, which is commonly used in lens studies. We first performed short tandem repeat (STR) analysis and validated SRA01/04 LEC for its human origin, as recommended by the eye research community. Next, we used Illumina HumanHT-12 v3.0 Expression BeadChip arrays to gain insights into the global gene expression profile of SRA01/04. Comparative analysis of SRA01/04 microarray data was performed using other resources such as the lens expression database iSyTE (integrated Systems Tool for Eye gene discovery), the cataract gene database Cat-Map and the published lens literature. This analysis showed that SRA01/04 significantly expresses >40% of the top iSyTE lens-enriched genes (313 out of 749) across different developmental stages. Further, SRA01/04 also significantly expresses ~53% (168 out of 318) of cataract-associated genes in Cat-Map. We also performed comparative gene expression analysis between SRA01/04â¯cells and the previously validated mouse LEC 21EM15. To gain insight into whether SRA01/04 reflects epithelial or fiber cell characteristics, we compared its gene expression profile to previously reported differentially expressed genes in isolated mouse lens epithelial and fiber cells. This analysis suggests that SRA01/04 has reduced expression of several fiber cell-enriched genes. In agreement with these findings, cell culture analysis demonstrates that SRA01/04 has reduced potential to initiate spontaneous lentoid body formation compared to 21EM15â¯cells. Next, to independently validate SRA01/04 microarray gene expression, we subjected several candidate genes to RT-PCR and RT-qPCR assays. This analysis demonstrates that SRA01/04 supports expression of many key genes associated with lens development and cataract, including CRYAB, CRYBB2, CRYGS, DKK3, EPHA2, ETV5, GJA1, HSPB1, INPPL1, ITGB1, PAX6, PVRL3, SFRP1, SPARC, TDRD7, and VIM, among others, and therefore can be relevant for understanding the mechanistic basis of these factors. At the same time, SRA01/04â¯cells do not exhibit robust expression of several genes known to be important to lens biology and cataract such as ALDH1A1, COL4A6, CP, CRYBA4, FOXE3, HMX1, HSF4, MAF, MEIS1, PITX3, PRX, SIX3, and TRPM3, among many others. Therefore, the present study offers a rich transcript-level resource for case-by-case evaluation of the potential advantages and limitations of SRA01/04â¯cells prior to their use in downstream investigations. In sum, these data show that the human LEC, SRA01/04, exhibits lens epithelial cell-like character reflected in the expression of several lens-enriched and cataract-associated genes, and therefore can be considered as a useful in vitro resource when combined with in vivo studies to gain insight into specific aspects of human lens epithelial cells.
Assuntos
Biomarcadores , Células Epiteliais/citologia , Proteínas do Olho/genética , Cristalino/citologia , Linhagem Celular , Efrina-A2/genética , Células Epiteliais/metabolismo , Expressão Gênica/fisiologia , Humanos , Cristalino/metabolismo , Biologia Molecular , Análise de Sequência com Séries de Oligonucleotídeos , Osteonectina/genética , Fator de Transcrição PAX6/genética , Reação em Cadeia da Polimerase em Tempo Real , Receptor EphA2 , Ribonucleoproteínas/genética , Cadeia B de alfa-Cristalina/genética , Cadeia B de beta-Cristalina/genéticaRESUMO
Mutations in the transcription factor genes FOXE3, HSF4, MAF, and PITX3 cause congenital lens defects including cataracts that may be accompanied by defects in other components of the eye or in nonocular tissues. We comprehensively describe here all the variants in FOXE3, HSF4, MAF, and PITX3 genes linked to human developmental defects. A total of 52 variants for FOXE3, 18 variants for HSF4, 20 variants for MAF, and 19 variants for PITX3 identified so far in isolated cases or within families are documented. This effort reveals FOXE3, HSF4, MAF, and PITX3 to have 33, 16, 18, and 7 unique causal mutations, respectively. Loss-of-function mutant animals for these genes have served to model the pathobiology of the associated human defects, and we discuss the currently known molecular function of these genes, particularly with emphasis on their role in ocular development. Finally, we make the detailed FOXE3, HSF4, MAF, and PITX3 variant information available in the Leiden Online Variation Database (LOVD) platform at https://www.LOVD.nl/FOXE3, https://www.LOVD.nl/HSF4, https://www.LOVD.nl/MAF, and https://www.LOVD.nl/PITX3. Thus, this article informs on key variants in transcription factor genes linked to cataract, aphakia, corneal opacity, glaucoma, microcornea, microphthalmia, anterior segment mesenchymal dysgenesis, and Ayme-Gripp syndrome, and facilitates their access through Web-based databases.
Assuntos
Catarata/genética , Anormalidades do Olho/genética , Fatores de Transcrição Forkhead/genética , Transtornos do Crescimento/genética , Perda Auditiva Neurossensorial/genética , Fatores de Transcrição de Choque Térmico/genética , Proteínas de Homeodomínio/genética , Deficiência Intelectual/genética , Proteínas Proto-Oncogênicas c-maf/genética , Fatores de Transcrição/genética , Animais , Fácies , Humanos , MutaçãoRESUMO
Myc proto-oncogenes regulate diverse cellular processes during development, but their roles during morphogenesis of specific tissues are not fully understood. We found that c-myc regulates cell proliferation in mouse lens development and previous genome-wide studies suggested functional roles for N-myc in developing lens. Here, we examined the role of N-myc in mouse lens development. Genetic inactivation of N-myc in the surface ectoderm or lens vesicle impaired eye and lens growth, while "late" inactivation in lens fibers had no effect. Unexpectedly, defective growth of N-myc-deficient lenses was not associated with alterations in lens progenitor cell proliferation or survival. Notably, N-myc-deficient lens exhibited a delay in degradation of DNA in terminally differentiating lens fiber cells. RNA-sequencing analysis of N-myc-deficient lenses identified a cohort of down-regulated genes associated with fiber cell differentiation that included DNaseIIß. Further, an integrated analysis of differentially expressed genes in N-myc-deficient lens using normal lens expression patterns of iSyTE, N-myc-binding motif analysis and molecular interaction data from the String database led to the derivation of an N-myc-based gene regulatory network in the lens. Finally, analysis of N-myc and c-myc double-deficient lens demonstrated that these Myc genes cooperate to drive lens growth prior to lens vesicle stage. Together, these findings provide evidence for exclusive and cooperative functions of Myc transcription factors in mouse lens development and identify novel mechanisms by which N-myc regulates cell differentiation during eye morphogenesis.
Assuntos
Diferenciação Celular , Cristalino/citologia , Cristalino/crescimento & desenvolvimento , Proteína Proto-Oncogênica N-Myc/metabolismo , Animais , Diferenciação Celular/genética , Núcleo Celular/metabolismo , Proliferação de Células/genética , Sobrevivência Celular/genética , Desenvolvimento Embrionário/genética , Regulação da Expressão Gênica no Desenvolvimento , Cristalino/metabolismo , Camundongos , Proteínas Proto-Oncogênicas c-myc/metabolismo , Transcrição Gênica , Transcriptoma/genéticaRESUMO
Isolated or syndromic congenital cataracts are heterogeneous developmental defects, making the identification of the associated genes challenging. In the past, mouse lens expression microarrays have been successfully applied in bioinformatics tools (e.g., iSyTE) to facilitate human cataract-associated gene discovery. To develop a new resource for geneticists, we report high-throughput RNA sequencing (RNA-seq) profiles of mouse lens at key embryonic stages (E)10.5 (lens pit), E12.5 (primary fiber cell differentiation), E14.5 and E16.5 (secondary fiber cell differentiation). These stages capture important events as the lens develops from an invaginating placode into a transparent tissue. Previously, in silico whole-embryo body (WB)-subtraction-based "lens-enriched" expression has been effective in prioritizing cataract-linked genes. To apply an analogous approach, we generated new mouse WB RNA-seq datasets and show that in silico WB subtraction of lens RNA-seq datasets successfully identifies key genes based on lens-enriched expression. At ≥2 counts-per-million expression, ≥1.5 log2 fold-enrichment (p < 0.05) cutoff, E10.5 lens exhibits 1401 enriched genes (17% lens-expressed genes), E12.5 lens exhibits 1937 enriched genes (22% lens-expressed genes), E14.5 lens exhibits 2514 enriched genes (31% lens-expressed genes), and E16.5 lens exhibits 2745 enriched genes (34% lens-expressed genes). Biological pathway analysis identified genes associated with lens development, transcription regulation and signaling pathways, among other functional groups. Furthermore, these new RNA-seq data confirmed high expression of established cataract-linked genes and identified new potential regulators in the lens. Finally, we developed new lens stage-specific UCSC Genome Brower annotation tracks and made these publicly accessible through iSyTE ( https://research.bioinformatics.udel.edu/iSyTE/ ) for user-friendly visualization of lens gene expression/enrichment to prioritize genes from high-throughput data from cataract cases.
Assuntos
Catarata/genética , Diferenciação Celular/genética , Desenvolvimento Embrionário/genética , Regulação da Expressão Gênica/genética , Animais , Catarata/patologia , Biologia Computacional , Estudos de Associação Genética , Predisposição Genética para Doença , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Cristalino/patologia , Camundongos , Análise de Sequência de RNARESUMO
Keratolenticular dysgenesis (KLD) and ectopia lentis are congenital eye defects. The aim of this study is the identification of molecular genetic alterations responsible for those ocular anomalies with neurologic impairment in an individual with a de novo balanced chromosome translocation t(11;18)(q23.3;q11.2)dn. Disruption of OAF, the human orthologue of the Drosophila oaf, by the 11q23.3 breakpoint results in reduced expression of this transcriptional regulator. Furthermore, four most likely nonfunctional chimeric transcripts comprising up to OAF exon 3, derived from the der(11) allele, have also been identified. This locus has been implicated by publicly available genome-wide association data in corneal disease and corneal topography. The expression of the poliovirus receptor-related 1(PVRL1) or nectin cell adhesion molecule 1 (NECTIN1), a paralogue of nectin cell adhesion molecule 3 (PVRL3) associated with congenital ocular defects, situated 500â¯kb upstream from 11q23.3 breakpoint, is increased. The 18q11.2 breakpoint is localized between cutaneous T-cell lymphoma-associated antigen 1(CTAGE1) and retinoblastoma binding protein 8 (RBBP8) genes. Genomic imbalance that could contribute to the observed phenotype was excluded. Analysis of gene expression datasets throughout normal murine ocular lens embryogenesis suggests that OAF expression is significantly enriched in the lens from early stages of development through adulthood, whereas PVRL1 is lens-enriched until E12.5 and then down-regulated. This contrasts with the observation that the proposita's lymphoblastoid cell lines exhibit low OAF and high PVRL1 expression as compared to control, which offers further support that the alterations described above are most likely responsible for the clinical phenotype. Finally, gene interaction topology data for PVRL1 also agree with our proposal that disruption of OAF by the translocation breakpoint and misregulation of PVRL1 due to a position effect contribute to the observed ocular and neurological phenotype.
Assuntos
Segmento Anterior do Olho/anormalidades , Opacidade da Córnea/genética , Ectopia do Cristalino/genética , Anormalidades do Olho/genética , Glicoproteínas de Membrana/genética , Nectinas/genética , Animais , Comprimento Axial do Olho/patologia , Córnea/patologia , Citocromo P-450 CYP1B1/genética , Perfilação da Expressão Gênica , Humanos , Cristalino/patologia , Camundongos , Translocação GenéticaRESUMO
Pediatric cataract is highly heterogeneous clinically and etiologically. While mostly isolated, cataract can be part of many multisystem disorders, further complicating the diagnostic process. In this study, we applied genomic tools in the form of a multi-gene panel as well as whole-exome sequencing on unselected cohort of pediatric cataract (166 patients from 74 families). Mutations in previously reported cataract genes were identified in 58% for a total of 43 mutations, including 15 that are novel. GEMIN4 was independently mutated in families with a syndrome of cataract, global developmental delay with or without renal involvement. We also highlight a recognizable syndrome that resembles galactosemia (a fulminant infantile liver disease with cataract) caused by biallelic mutations in CYP51A1. A founder mutation in RIC1 (KIAA1432) was identified in patients with cataract, brain atrophy, microcephaly with or without cleft lip and palate. For non-syndromic pediatric cataract, we map a novel locus in a multiplex consanguineous family on 4p15.32 where exome sequencing revealed a homozygous truncating mutation in TAPT1. We report two further candidates that are biallelically inactivated each in a single cataract family: TAF1A (cataract with global developmental delay) and WDR87 (non-syndromic cataract). In addition to positional mapping data, we use iSyTE developmental lens expression and gene-network analysis to corroborate the proposed link between the novel candidate genes and cataract. Our study expands the phenotypic, allelic and locus heterogeneity of pediatric cataract. The high diagnostic yield of clinical genomics supports the adoption of this approach in this patient group.