Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 76
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Biotechnol Bioeng ; 120(5): 1215-1228, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36740587

RESUMO

Vegetables provide many nutrients in the form of fiber, vitamins, and minerals, which make them an important part of our diet. Numerous biotic and abiotic stresses can affect crop growth, quality, and yield. Traditional and modern breeding strategies to improve plant traits are slow and resource intensive. Therefore, it is necessary to find new approaches for crop improvement. Clustered regularly interspaced short palindromic repeats/CRISPR associated 9 (CRISPR/Cas9) is a genome editing tool that can be used to modify targeted genes for desirable traits with greater efficiency and accuracy. By using CRISPR/Cas9 editing to precisely mutate key genes, it is possible to rapidly generate new germplasm resources for the promotion of important agronomic traits. This is made possible by the availability of whole genome sequencing data and information on the function of genes responsible for important traits. In addition, CRISPR/Cas9 systems have revolutionized agriculture, making genome editing more versatile. Currently, genome editing of vegetable crops is limited to a few vegetable varieties (tomato, sweet potato, potato, carrot, squash, eggplant, etc.) due to lack of regeneration protocols and sufficient genome sequencing data. In this article, we summarize recent studies on the application of CRISPR/Cas9 in improving vegetable trait development and the potential for future improvement.


Assuntos
Sistemas CRISPR-Cas , Edição de Genes , Edição de Genes/métodos , Sistemas CRISPR-Cas/genética , Verduras/genética , Plantas Geneticamente Modificadas/genética , Genoma de Planta/genética
2.
Biotechnol Bioeng ; 120(1): 82-94, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36224758

RESUMO

Plants produce a large number of secondary metabolites, known as phytometabolites that may be employed as medicines, dyes, poisons, and insecticides in the field of medicine, agriculture, and industrial use, respectively. The rise of genome management approaches has promised a factual revolution in genetic engineering. Targeted genome editing in living entities permits the understanding of the biological systems very clearly, and also sanctions to address a wide-ranging objective in the direction of improving features of plant and their yields. The last few years have introduced a number of unique genome editing systems, including transcription activator-like effector nucleases, zinc finger nucleases, and miRNA-regulated clustered regularly interspaced short palindromic repeats/Cas9 (CRISPR/Cas9). Genome editing systems have helped in the transformation of metabolic engineering, allowing researchers to modify biosynthetic pathways of different secondary metabolites. Given the growing relevance of editing genomes in plant research, the exciting novel methods are briefly reviewed in this chapter. Also, this chapter highlights recent discoveries on the CRISPR-based modification of natural products in different medicinal plants.


Assuntos
Sistemas CRISPR-Cas , Edição de Genes , Sistemas CRISPR-Cas/genética , Plantas/genética , Engenharia Metabólica , Compostos Fitoquímicos
3.
Microb Ecol ; 86(3): 1455-1486, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36917283

RESUMO

Globally, substantial research into endophytic microbes is being conducted to increase agricultural and environmental sustainability. Endophytic microbes such as bacteria, actinomycetes, and fungi inhabit ubiquitously within the tissues of all plant species without causing any harm or disease. Endophytes form symbiotic relationships with diverse plant species and can regulate numerous host functions, including resistance to abiotic and biotic stresses, growth and development, and stimulating immune systems. Moreover, plant endophytes play a dominant role in nutrient cycling, biodegradation, and bioremediation, and are widely used in many industries. Endophytes have a stronger predisposition for enhancing mineral and metal solubility by cells through the secretion of organic acids with low molecular weight and metal-specific ligands (such as siderophores) that alter soil pH and boost binding activity. Finally, endophytes synthesize various bioactive compounds with high competence that are promising candidates for new drugs, antibiotics, and medicines. Bioprospecting of endophytic novel secondary metabolites has given momentum to sustainable agriculture for combating environmental stresses. Biotechnological interventions with the aid of endophytes played a pivotal role in crop improvement to mitigate biotic and abiotic stress conditions like drought, salinity, xenobiotic compounds, and heavy metals. Identification of putative genes from endophytes conferring resistance and tolerance to crop diseases, apart from those involved in the accumulation and degradation of contaminants, could open new avenues in agricultural research and development. Furthermore, a detailed molecular and biochemical understanding of endophyte entry and colonization strategy in the host would better help in manipulating crop productivity under changing climatic conditions. Therefore, the present review highlights current research trends based on the SCOPUS database, potential biotechnological interventions of endophytic microorganisms in combating environmental stresses influencing crop productivity, future opportunities of endophytes in improving plant stress tolerance, and their contribution to sustainable remediation of hazardous environmental contaminants.


Assuntos
Endófitos , Simbiose , Endófitos/fisiologia , Fungos/fisiologia , Estresse Fisiológico , Plantas/microbiologia , Agricultura
4.
Environ Res ; 225: 115612, 2023 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-36871942

RESUMO

The World Health Organization (WHO) recognised variant B.1.1.529 of the Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) as a variant of concern, termed "Omicron", on November 26, 2021. Its diffusion was attributed to its several mutations, which allow promoting its ability to diffuse worldwide and its capability in immune evasion. As a consequence, some additional serious threats to public health posed the risk to undermine the global efforts made in the last two years to control the pandemic. In the past, several works were devoted to discussing a possible contribution of air pollution to the SARS-CoV-2 spread. However, to the best of the authors' knowledge, there are still no works dealing with the Omicron variant diffusion mechanisms. This work represents a snapshot of what we know right now, in the frame of an analysis of the Omicron variant spread. The paper proposes the use of a single indicator, commercial trade data, to model the virus spread. It is proposed as a surrogate of the interactions occurring between humans (the virus transmission mechanism due to human-to-human contacts) and could be considered for other diseases. It allows also to explain the unexpected increase in infection cases in China, detected at beginning of 2023. The air quality data are also analyzed to evaluate for the first time the role of air particulate matter (PM) as a carrier of the Omicron variant diffusion. Due to emerging concerns associated with other viruses (such as smallpox-like virus diffusion in Europe and America), the proposed approach seems to be promising to model the virus spreading.


Assuntos
Poluição do Ar , COVID-19 , Humanos , COVID-19/epidemiologia , SARS-CoV-2 , China
5.
Environ Res ; 233: 116357, 2023 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-37295582

RESUMO

Pesticide and fertilizer usage is at the center of agricultural production to meet the demands of an ever-increasing global population. However, rising levels of chemicals impose a serious threat to the health of humans, animals, plants, and even the entire biosphere because of their toxic effects. Biostimulants offer the opportunity to reduce the agricultural chemical footprint owing their multilevel, beneficial properties helping to make agriculture more sustainable and resilient. When applied to plants or to the soil an increased absorption and distribution of nutrients, tolerance to environmental stress, and improved quality of plant products explain the mechanisms by which these probiotics are useful. In recent years, the use of plant biostimulants has received widespread attention across the globe as an ecologically acceptable alternative to sustainable agricultural production. As a result, their worldwide market continues to grow, and further research will be conducted to broaden the range of the products now available. Through this review, we present a current understanding of biostimulants, their mode of action and their involvement in modulating abiotic stress responses, including omics research, which may provide a comprehensive assessment of the crop's response by correlating molecular changes to physiological pathways activated under stress conditions aggravated by climate change.


Assuntos
Agricultura , Mudança Climática , Humanos , Animais , Produtos Agrícolas , Solo , Estresse Fisiológico
6.
Environ Res ; 216(Pt 2): 114496, 2023 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-36257453

RESUMO

The emergence of novel respiratory disease (COVID-19) caused by SARS-CoV-2 has become a public health emergency worldwide and perturbed the global economy and ecosystem services. Many studies have reported the presence of SARS-CoV-2 in different environmental compartments, its transmission via environmental routes, and potential environmental challenges posed by the COVID-19 pandemic. None of these studies have comprehensively reviewed the bidirectional relationship between the COVID-19 pandemic and the environment. For the first time, we explored the relationship between the environment and the SARS-CoV-2 virus/COVID-19 and how they affect each other. Supporting evidence presented here clearly demonstrates the presence of SARS-CoV-2 in soil and water, denoting the role of the environment in the COVID-19 transmission process. However, most studies fail to determine if the viral genomes they have discovered are infectious, which could be affected by the environmental factors in which they are found.The potential environmental impact of the pandemic, including water pollution, chemical contamination, increased generation of non-biodegradable waste, and single-use plastics have received the most attention. For the most part, efficient measures have been used to address the current environmental challenges from COVID-19, including using environmentally friendly disinfection technologies and employing measures to reduce the production of plastic wastes, such as the reuse and recycling of plastics. Developing sustainable solutions to counter the environmental challenges posed by the COVID-19 pandemic should be included in national preparedness strategies. In conclusion, combating the pandemic and accomplishing public health goals should be balanced with environmentally sustainable measures, as the two are closely intertwined.


Assuntos
COVID-19 , Humanos , COVID-19/epidemiologia , Ecossistema , Pandemias , Plásticos , SARS-CoV-2
7.
Environ Res ; 231(Pt 2): 115989, 2023 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-37119838

RESUMO

In conjunction with global climate change, progressive ocean warming, and acclivity in pollution and anthropogenic eutrophication, the incidence of harmful algal blooms (HABs) and cyanobacterial harmful algal blooms (CHABs) continue to expand in distribution, frequency, and magnitude. Algal bloom-related toxins have been implicated in human health disorders and ecological dysfunction and are detrimental to the national and global economy. Biomonitoring programs based on traditional monitoring protocols were characterised by some limitations that can be efficiently overdone using the CRISPR/Cas technology. In the present review, the potential and challenges of exploiting the Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)-Cas technology for early detection of HABs and CHABs-associated toxigenic species were analysed. Based on more than 30 scientific papers, the main results indicate the great potential of CRISPR/Cas technology for this issue, even if the high sensitivity detected for the Cas12 and Cas13 platforms represents a possible interference risk.


Assuntos
Monitoramento Biológico , Cianobactérias , Humanos , Sistemas CRISPR-Cas , Proliferação Nociva de Algas , Cianobactérias/genética , Poluição Ambiental
8.
Environ Res ; 216(Pt 1): 114438, 2023 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-36179880

RESUMO

COVID-19 pandemic has led to the generation of massive plastic wastes, comprising of onetime useable gloves, masks, tissues, and other personal protective equipment (PPE). Recommendations for the employ of single-use disposable masks made up of various polymeric materials like polyethylene, polyurethane, polyacrylonitrile, and polypropylene, polystyrene, can have significant aftermath on environmental, human as well as animal health. Improper disposal and handling of healthcare wastes and lack of proper management practices are creating serious health hazards and an extra challenge for the local authorities designated for management of solid waste. Most of the COVID-19 medical wastes generated are now being treated by incineration which generates microplastic particles (MPs), dioxin, furans, and various toxic metals, such as cadmium and lead. Moreover, natural degradation and mechanical abrasion of these wastes can lead to the generation of MPs which cause a serious health risk to living beings. It is a major threat to aquatic lives and gets into foods subsequently jeopardizing global food safety. Moreover, the presence of plastic is also considered a threat owing to the increased carbon emission and poses a profound danger to the global food chain. Degradation of MPs by axenic and mixed culture microorganisms, such as bacteria, fungi, microalgae etc. can be considered an eco-sustainable technique for the mitigation of the microplastic menace. This review primarily deals with the increase in microplastic pollution due to increased use of PPE along with different disinfection methods using chemicals, steam, microwave, autoclave, and incineration which are presently being employed for the treatment of COVID-19 pandemic-related wastes. The biological treatment of the MPs by diverse groups of fungi and bacteria can be an alternative option for the mitigation of microplastic wastes generated from COVID-19 healthcare waste.


Assuntos
COVID-19 , Microplásticos , Animais , Humanos , Plásticos/toxicidade , COVID-19/prevenção & controle , Pandemias , Atenção à Saúde
9.
Environ Chem Lett ; 21(3): 1787-1810, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36785620

RESUMO

Microplastics pollution is major threat to ecosystems and is impacting abiotic and biotic components. Microplastics are diverse and highly complex contaminants that transport other contaminants and microbes. Current methods to remove microplastics include biodegradation, incineration, landfilling, and recycling. Here we review microplastics with focus on sources, toxicity, and biodegradation. We discuss the role of algae, fungi, bacteria in the biodegradation, and we present biotechnological methods to enhance degradation, e.g., gene editing tools and bioinformatics.

10.
J Cell Mol Med ; 26(11): 3083-3119, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35502487

RESUMO

Piper betle L. (synonym: Piper betel Blanco), or betel vine, an economically and medicinally important cash crop, belongs to the family Piperaceae, often known as the green gold. The plant can be found all over the world and is cultivatedprimarily in South East Asian countries for its beautiful glossy heart-shaped leaves, which are chewed or consumed as betelquidand widely used in Chinese and Indian folk medicine, as carminative, stimulant,astringent, against parasitic worms, conjunctivitis, rheumatism, wound, etc., andis also used for religious purposes. Hydroxychavicol is the most important bioactive compound among the wide range of phytoconstituents found in essential oil and extracts. The pharmacological attributes of P. betle are antiproliferation, anticancer, neuropharmacological, analgesic, antioxidant, antiulcerogenic, hepatoprotective, antifertility, antibacterial, antifungal and many more. Immense attention has been paid to nanoformulations and their applications. The application of P. betle did not show cytotoxicity in preclinical experiments, suggesting that it could serve as a promising therapeutic candidate for different diseases. The present review comprehensively summarizes the botanical description, geographical distribution, economic value and cultivation, ethnobotanical uses, preclinical pharmacological properties with insights of toxicological, clinical efficacy, and safety of P. betle. The findings suggest that P. betle represents an orally active and safe natural agent that exhibits great therapeutic potential for managing various human medical conditions. However, further research is needed to elucidate its underlying molecular mechanisms of action, clinical aspects, structure-activity relationships, bioavailability and synergistic interactions with other drugs.


Assuntos
Piper betle , Antioxidantes/farmacologia , Antioxidantes/uso terapêutico , Etnofarmacologia , Piper betle/química , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Extratos Vegetais/uso terapêutico , Folhas de Planta/química
11.
Environ Res ; 213: 113622, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35710026

RESUMO

Ever since its discovery in 1957, Corynebacterium glutamicum has become a well-established industrial strain and is known for its massive capability of producing various amino acids (like L-lysine and L-glutamate) and other value-added chemicals. With the rising demand for these bio-based products, the revelation of the whole genome sequences of the wild type strains, and the astounding advancements made in the fields of metabolic engineering and systems biology, our perspective of C. glutamicum has been revolutionized and has expanded our understanding of its strain development. With these advancements, a new era for C. glutamicum supremacy in the field of industrial biotechnology began. This led to remarkable progress in the enhancement of tailor-made over-producing strains and further development of the substrate spectrum of the bacterium, to easily accessible, economical, and renewable resources. C. glutamicum has also been metabolically engineered and used in the degradation/assimilation of highly toxic and ubiquitous environmental contaminant, arsenic, present in water or soil. Here, we review the history, current knowledge, progress, achievements, and future trends relating to the versatile metabolic factory, C. glutamicum. This review paper is devoted to C. glutamicum which is one of the leading industrial microbes, and one of the most promising and versatile candidates to be developed. It can be used not only as a platform microorganism to produce different value-added chemicals and recombinant proteins, but also as a tool for bioremediation, allowing to enhance specific properties, for example in situ bioremediation.


Assuntos
Corynebacterium glutamicum , Biodegradação Ambiental , Biotecnologia , Corynebacterium glutamicum/genética , Corynebacterium glutamicum/metabolismo , Engenharia Metabólica , Solo
12.
Environ Res ; 203: 111839, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34358502

RESUMO

This review discusses the techniques available for detecting and inactivating of pathogens in municipal wastewater, landfill leachate, and solid waste. In view of the current COVID-19 pandemic, SARS-CoV-2 is being given special attention, with a thorough examination of all possible transmission pathways linked to the selected waste matrices. Despite the lack of works focused on landfill leachate, a systematic review method, based on cluster analysis, allows to analyze the available papers devoted to sewage sludge and wastewater, allowing to focalize the work on technologies able to detect and treat pathogens. In this work, great attention is also devoted to infectivity and transmission mechanisms of SARS-CoV-2. Moreover, the literature analysis shows that sewage sludge and landfill leachate seem to have a remote chance to act as a virus transmission route (pollution-to-human transmission) due to improper collection and treatment of municipal wastewater and solid waste. However due to the incertitude about virus infectivity, these possibilities cannot be excluded and need further investigation. As a conclusion, this paper shows that additional research is required not only on the coronavirus-specific disinfection, but also the regular surveillance or monitoring of viral loads in sewage sludge, wastewater, and landfill leachate. The disinfection strategies need to be optimized in terms of dosage and potential adverse impacts like antimicrobial resistance, among many other factors. Finally, the presence of SARS-CoV-2 and other pathogenic microorganisms in sewage sludge, wastewater, and landfill leachate can hamper the possibility to ensure safe water and public health in economically marginalized countries and hinder the realization of the United Nations' sustainable development goals (SDGs).


Assuntos
COVID-19 , Poluentes Químicos da Água , Humanos , Pandemias , SARS-CoV-2 , Resíduos Sólidos/análise , Instalações de Eliminação de Resíduos , Águas Residuárias , Poluentes Químicos da Água/análise
13.
Appl Microbiol Biotechnol ; 106(8): 2827-2853, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35384450

RESUMO

The need for biosensors has evolved in the detection of molecules, diseases, and pollution from various sources. This requirement has headed to the development of accurate and powerful equipment for analysis using biological sensing component as a biosensor. Biosensors have the advantage of rapid detection that can beat the conventional methods for the detection of the same molecules. Bio-chemiluminescence-based sensors are very sensitive during use in biological immune assay systems. Optical biosensors are emerging with time as they have the advantage that they act with a change in the refractive index. Carbon nanotube-based sensors are another area that has an important role in the biosensor field. Bioluminescence gives much higher quantum yields than classical chemiluminescence. Electro-generated bioluminescence has the advantage of miniature size and can produce a high signal-to-noise ratio and the controlled emission. Recent advances in biological techniques and instrumentation involving fluorescence tag to nanomaterials have increased the sensitivity limit of biosensors. Integrated approaches provided a better perspective for developing specific and sensitive biosensors with high regenerative potentials. This paper mainly focuses on sensors that are important for the detection of multiple molecules related to clinical and environmental applications. KEY POINTS: • The review focusses on the applications of luminescence-based, surface plasmon resonance-based, carbon nanotube-based, and graphene-based biosensors • Potential clinical, environmental, agricultural, and food industry applications/uses of biosensors have been critically reviewed • The current limitations in this field are discussed, as well as the prospects for future advancement.


Assuntos
Técnicas Biossensoriais , Grafite , Nanotubos de Carbono , Luminescência , Ressonância de Plasmônio de Superfície
14.
Appl Microbiol Biotechnol ; 106(13-16): 4867-4883, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35819514

RESUMO

Rauvolfia serpentina (L). Benth. ex Kurz. (Apocynaceae), commonly known as Sarpagandha or Indian snakeroot, has long been used in the traditional treatment of snakebites, hypertension, and mental illness. The plant is known to produce an array of indole alkaloids such as reserpine, ajmaline, amalicine, etc. which show immense pharmacological and biomedical significance. However, owing to its poor seed viability, lesser germination rate and overexploitation for several decades for its commercially important bioactive constituents, the plant has become endangered in its natural habitat. The present review comprehensively encompasses the various biotechnological tools employed in this endangered Ayurvedic plant for its in vitro propagation, role of plant growth regulators and additives in direct and indirect regeneration, somatic embryogenesis and synthetic seed production, secondary metabolite production in vitro, and assessment of clonal fidelity using molecular markers and genetic transformation. In addition, elicitation and other methods of optimization of its indole-alkaloids are also described herewith. KEY POINTS: • Latest literature on in vitro propagation of Rauvolfia serpentina • Biotechnological production and optimization of indole alkaloids • Clonal fidelity and transgenic studies in R. serpentina.


Assuntos
Rauwolfia , Alcaloides de Triptamina e Secologanina , Biotecnologia , Alcaloides Indólicos/metabolismo , Raízes de Plantas/metabolismo , Rauwolfia/genética , Alcaloides de Triptamina e Secologanina/metabolismo
15.
Appl Microbiol Biotechnol ; 106(5-6): 1837-1854, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35218388

RESUMO

Bacopa monnieri (L.) Wettst. or water hyssop commonly known as "Brahmi" is a small, creeping, succulent herb from the Plantaginaceae family. It is popularly employed in Ayurvedic medicine as a nerve tonic to improve memory and cognition. Of late, this plant has been reported extensively for its pharmacologically active phyto-constituents. The main phytochemicals are brahmine, alkaloids, herpestine, and saponins. The saponins include bacoside A, bacoside B, and betulic acid. Investigation into the pharmacological effect of this plant has thrived lately, encouraging its neuroprotective and memory supporting capacity among others. Besides, it possesses many other therapeutic activities like antimicrobial, antioxidant, anti-inflammatory, gastroprotective properties, etc. Because of its multipurpose therapeutic potential, it is overexploited owing to the prioritization of natural remedies over conventional ones, which compels us to conserve them. B. monnieri is confronting the danger of extinction from its natural habitat as it is a major cultivated medico-botanical and seed propagation is restricted due to less seed availability and viability. The ever-increasing demand for the plant can be dealt with mass propagation through plant tissue culture strategy. Micropropagation utilizing axillary meristems as well as de novo organogenesis have been widely investigated in this plant which has also been explored for its conservation and production of different types of secondary metabolites. Diverse in vitro methods such as organogenesis, cell suspension, and callus cultures have been accounted for with the aim of production and/or enhancement of bacosides. Direct shoot-organogenesis was initiated in excised leaf and internodal explants without any exogenous plant growth regulator(s) (PGRs), and the induction rate was improved when exogenous cytokinins and other supplements were used. Moreover, biotechnological toolkits like Agrobacterium-mediated transformation and the use of mutagens have been reported. Besides, the molecular marker-based studies demonstrated the clonal fidelity among the natural and in vitro generated plantlets also elucidating the inherent diversity among the natural populations. Agrobacterium-mediated transformation system was mostly employed to optimize bacoside biosynthesis and heterologous expression of other genes. The present review aims at depicting the recent research outcomes of in vitro studies performed on B. monnieri which include root and shoot organogenesis, callus induction, somatic embryogenesis, production of secondary metabolites by in vitro propagation, acclimatization of the in vitro raised plantlets, genetic transformation, and molecular marker-based studies of clonal fidelity. KEY POINTS: • Critical and up to date records on in vitro propagation of Bacopa monnieri • In vitro propagation and elicitation of secondary metabolites from B. monnieri • Molecular markers and transgenic studies in B. monnieri.


Assuntos
Bacopa , Saponinas , Triterpenos , Agrobacterium/genética , Bacopa/química , Bacopa/metabolismo , Biotecnologia , Extratos Vegetais/metabolismo , Extratos Vegetais/farmacologia , Saponinas/metabolismo , Triterpenos/metabolismo
16.
Appl Microbiol Biotechnol ; 106(3): 905-929, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35039927

RESUMO

Polyamines (PAs) are ubiquitous low-molecular-weight, aliphatic compounds with wide as well as complex application in fundamental areas of plant growth and development. PAs are mediator of basic metabolism of organisms which include cell division and differentiation, biotic and abiotic stress tolerance, reversal of oxidative damage, stabilization of nucleic acids, and protein and phospholipid binding. In plants, it attributes in direct and indirect organogenesis, endogenous phytohormone regulation, cellular compartmentalization, fruit and flower development, senescence, and secondary metabolite production which are highly tuned as first line of defense response. There are several aspects of polyamine-directed mechanism that regulate overall plant growth in vitro and in vivo. In the present review, we have critically discussed the role played by polyamine on the enhanced production of bioactive natural products and how the same polyamines are functioning against different environmental stress conditions, i.e., salinity, drought, high CO2 content, herbivory, and physical wounding. The role of polyamines on elicitation process has been highlighted previously, but it is important to note that its activity as growth regulator under in vitro condition is correlated with an array of intertwined mechanism and physiological tuning. Medicinal plants under different developmental stages of micropropagation are characterized with different functional aspects and regulatory changes during embryogenesis and organogenesis. The effect of precursor molecules as well as additives and biosynthetic inhibitors of polyamines in rhizogenesis, callogenesis, tuberization, embryogenesis, callus formation, and metabolite production has been discussed thoroughly. The beneficial effect of exogenous application of PAs in elicitation of secondary metabolite production, plant growth and morphogenesis and overall stress tolerance are summarized in this present work. KEY POINTS: • Polyamines (PAs) play crucial roles in in vitro organogenesis. • PAs elicitate bioactive secondary metabolites (SMs). • Transgenic studies elucidate and optimize PA biosynthetic genes coding SMs.


Assuntos
Plantas Medicinais , Poliaminas , Biotecnologia , Metabolômica , Desenvolvimento Vegetal
17.
Appl Microbiol Biotechnol ; 106(17): 5399-5414, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35941253

RESUMO

Gloriosa superba L., commonly known as "gloriosa lily," "glory lily," and "tiger claw," is a perennial climber in the Liliaceae family. This plant is used in African and Southeast Asian cultures as an ayurvedic medicinal herb to treat various health conditions. Its main bioactive component is colchicine, which is responsible for medicinal efficacies as well as poisonous properties of the plant. A high market demand, imprudent harvesting of G. superba from natural habitat, and low seed setting have led scientists to explore micropropagation techniques and in vitro optimization of its phytochemicals. Plant growth regulators have been used to induce callus, root, and shoot organogenesis, and somatic embryogenesis in vitro. This review is aimed at presenting information regarding the occurrence, taxonomic description, phytochemistry, micropropagation, in vitro secondary metabolite, and synthetic seed production. The data collected from the existing literature, along with an analysis of individual study details, outcomes, and variations in the reports, will contribute to the development of biotechnological strategies for conservation and mass propagation of G. superba. KEY POINTS: • Latest literature on micropropagation of Gloriosa superba. • Biotechnological production and optimization of colchicine. • Regeneration, somatic embryogenesis, and synthetic seed production.


Assuntos
Colchicaceae , Plantas Medicinais , Colchicina , Sementes
18.
Drug Resist Updat ; 55: 100754, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33691261

RESUMO

One of the primary causes of attenuated or loss of efficacy of cancer chemotherapy is the emergence of multidrug resistance (MDR). Numerous studies have been published regarding potential approaches to reverse resistance to taxanes, including paclitaxel (PTX) and docetaxel, which represent one of the most important classes of anticancer drugs. Since 1984, following the FDA approval of paclitaxel for the treatment of advanced ovarian carcinoma, taxanes have been extensively used as drugs that target tumor microtubules. Taxanes, have been shown to affect an array of oncogenic signaling pathways and have potent cytotoxic efficacy. However, the clinical success of these drugs has been restricted by the emergence of cancer cell resistance, primarily caused by the overexpression of MDR efflux transporters or by microtubule alterations. In vitro and in vivo studies indicate that the mechanisms underlying the resistance to PTX and docetaxel are primarily due to alterations in α-tubulin and ß-tubulin. Moreover, resistance to PTX and docetaxel results from: 1) alterations in microtubule-protein interactions, including microtubule-associated protein 4, stathmin, centriole, cilia, spindle-associated protein, and kinesins; 2) alterations in the expression and activity of multidrug efflux transporters of the ABC superfamily including P-glycoprotein (P-gp/ABCB1); 3) overexpression of anti-apoptotic proteins or inhibition of apoptotic proteins and tumor-suppressor proteins, as well as 4) modulation of signal transduction pathways associated with the activity of several cytokines, chemokines and transcription factors. In this review, we discuss the abovementioned molecular mechanisms and their role in mediating cancer chemoresistance to PTX and docetaxel. We provide a detailed analysis of both in vitro and in vivo experimental data and describe the application of these findings to therapeutic practice. The current review also discusses the efficacy of different pharmacological modulations to achieve reversal of PTX resistance. The therapeutic roles of several novel compounds, as well as herbal formulations, are also discussed. Among them, many structural derivatives had efficacy against the MDR phenotype by either suppressing MDR or increasing the cytotoxic efficacy compared to the parental drugs, or both. Natural products functioning as MDR chemosensitizers offer novel treatment strategies in patients with chemoresistant cancers by attenuating MDR and increasing chemotherapy efficacy. We broadly discuss the roles of inhibitors of P-gp and other efflux pumps, in the reversal of PTX and docetaxel resistance in cancer cells and the significance of using a nanomedicine delivery system in this context. Thus, a better understanding of the molecular mechanisms mediating the reversal of drug resistance, combined with drug efficacy and the application of target-based inhibition or specific drug delivery, could signal a new era in modern medicine that would limit the pathological consequences of MDR in cancer patients.


Assuntos
Antineoplásicos/farmacologia , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos/fisiologia , Taxoides/farmacologia , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/efeitos dos fármacos , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/fisiologia , Hidrocarbonetos Aromáticos com Pontes , Linhagem Celular Tumoral , Portadores de Fármacos , Resistencia a Medicamentos Antineoplásicos/genética , Genes Supressores de Tumor/efeitos dos fármacos , Genes Supressores de Tumor/fisiologia , Humanos , Microtúbulos/fisiologia , Nanopartículas , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/fisiologia , Tubulina (Proteína)/efeitos dos fármacos
19.
Int J Mol Sci ; 23(17)2022 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-36077343

RESUMO

Impaired mitochondrial function has been proposed as a causative factor in neurodegenerative diseases, including amyotrophic lateral sclerosis (ALS), caused by motor neuron degeneration. Mutations in superoxide dismutase (SOD1) cause ALS and SOD1 mutants were shown to interact with the voltage-dependent anion channel 1 (VDAC1), affecting its normal function. VDAC1 is a multi-functional channel located at the outer mitochondrial membrane that serves as a mitochondrial gatekeeper controlling metabolic and energetic crosstalk between mitochondria and the rest of the cell and it is a key player in mitochondria-mediated apoptosis. Previously, we showed that VDAC1 interacts with SOD1 and that the VDAC1-N-terminal-derived peptide prevented mutant SOD1 cytotoxic effects. In this study, using a peptide array, we identified the SOD1 sequence that interacts with VDAC1. Synthetic peptides generated from the identified VDAC1-binding sequences in SOD1 directly interacted with purified VDAC1. We also show that VDAC1 oligomerization increased in spinal cord mitochondria isolated from mutant SOD1G93A mice and rats. Thus, we used the novel VDAC1-specific small molecules, VBIT-4 and VBIT-12, inhibiting VDAC1 oligomerization and subsequently apoptosis and associated processes such as ROS production, and increased cytosolic Ca2+. VBIT-12 was able to rescue cell death induced by mutant SOD1 in neuronal cultures. Finally, although survival was not affected, VBIT-12 administration significantly improved muscle endurance in mutant SOD1G93A mice. Therefore, VBIT-12 may represent an attractive therapy for maintaining muscle function during the progression of ALS.


Assuntos
Esclerose Lateral Amiotrófica , Esclerose Lateral Amiotrófica/tratamento farmacológico , Esclerose Lateral Amiotrófica/genética , Esclerose Lateral Amiotrófica/metabolismo , Animais , Modelos Animais de Doenças , Camundongos , Camundongos Transgênicos , Proteínas Mitocondriais/metabolismo , Ratos , Superóxido Dismutase/metabolismo , Superóxido Dismutase-1/genética , Superóxido Dismutase-1/metabolismo , Canal de Ânion 1 Dependente de Voltagem/genética , Canal de Ânion 1 Dependente de Voltagem/metabolismo
20.
Environ Chem Lett ; 20(6): 3883-3904, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35996725

RESUMO

Almost all aspects of society from food security to disease control and prevention have benefited from pharmaceutical and personal care products, yet these products are a major source of contamination that ends up in wastewater and ecosystems. This issue has been sharply accentuated during the coronavirus disease pandemic 2019 (COVID-19) due to the higher use of disinfectants and other products. Here we review pharmaceutical and personal care products with focus on their occurrence in the environment, detection, risk, and removal. Supplementary Information: The online version contains supplementary material available at 10.1007/s10311-022-01498-7.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA