Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros

Base de dados
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Nat Cell Biol ; 25(4): 579-591, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-37024684

RESUMO

DNA and Histone 3 Lysine 27 methylation typically function as repressive modifications and operate within distinct genomic compartments. In mammals, the majority of the genome is kept in a DNA methylated state, whereas the Polycomb repressive complexes regulate the unmethylated CpG-rich promoters of developmental genes. In contrast to this general framework, the extra-embryonic lineages display non-canonical, globally intermediate DNA methylation levels, including disruption of local Polycomb domains. Here, to better understand this unusual landscape's molecular properties, we genetically and chemically perturbed major epigenetic pathways in mouse trophoblast stem cells. We find that the extra-embryonic epigenome reflects ongoing and dynamic de novo methyltransferase recruitment, which is continuously antagonized by Polycomb to maintain intermediate, locally disordered methylation. Despite its disorganized molecular appearance, our data point to a highly controlled equilibrium between counteracting repressors within extra-embryonic cells, one that can seemingly persist indefinitely without bistable features typically seen for embryonic forms of epigenetic regulation.


Assuntos
Epigênese Genética , Epigenoma , Animais , Camundongos , Feminino , Gravidez , Epigenoma/genética , Placenta/metabolismo , Metilação de DNA , Proteínas do Grupo Polycomb/genética , DNA/metabolismo , Mamíferos/metabolismo
2.
Nat Genet ; 54(7): 1026-1036, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35817979

RESUMO

Vertebrate genomes organize into topologically associating domains, delimited by boundaries that insulate regulatory elements from nontarget genes. However, how boundary function is established is not well understood. Here, we combine genome-wide analyses and transgenic mouse assays to dissect the regulatory logic of clustered-CCCTC-binding factor (CTCF) boundaries in vivo, interrogating their function at multiple levels: chromatin interactions, transcription and phenotypes. Individual CTCF binding site (CBS) deletions revealed that the characteristics of specific sites can outweigh other factors such as CBS number and orientation. Combined deletions demonstrated that CBSs cooperate redundantly and provide boundary robustness. We show that divergent CBS signatures are not strictly required for effective insulation and that chromatin loops formed by nonconvergently oriented sites could be mediated by a loop interference mechanism. Further, we observe that insulation strength constitutes a quantitative modulator of gene expression and phenotypes. Our results highlight the modular nature of boundaries and their control over developmental processes.


Assuntos
Cromatina , Estudo de Associação Genômica Ampla , Animais , Sítios de Ligação/genética , Fator de Ligação a CCCTC/genética , Fator de Ligação a CCCTC/metabolismo , Cromatina/genética , Cromossomos/metabolismo , Genoma/genética , Camundongos
3.
Sci Immunol ; 7(75): eabj0140, 2022 09 16.
Artigo em Inglês | MEDLINE | ID: mdl-36112694

RESUMO

Pulmonary alveolar proteinosis (PAP) is a syndrome characterized by accumulation of surfactant lipoproteins within the lung alveoli. Alveolar macrophages (AMs) are crucial for surfactant clearance, and their differentiation depends on colony-stimulating factor 2 (CSF2), which regulates the establishment of an AM-characteristic gene regulatory network. Here, we report that the transcription factor CCAAT/enhancer binding protein ß (C/EBPß) is essential for the development of the AM identity, as demonstrated by transcriptome and chromatin accessibility analysis. Furthermore, C/EBPß-deficient AMs showed severe defects in proliferation, phagocytosis, and lipid metabolism, collectively resulting in a PAP-like syndrome. Mechanistically, the long C/EBPß protein variants LAP* and LAP together with CSF2 signaling induced the expression of Pparg isoform 2 but not Pparg isoform 1, a molecular regulatory mechanism that was also observed in other CSF2-primed macrophages. These results uncover C/EBPß as a key regulator of AM cell fate and shed light on the molecular networks controlling lipid metabolism in macrophages.


Assuntos
Macrófagos Alveolares , Surfactantes Pulmonares , Cromatina/metabolismo , Metabolismo dos Lipídeos , Lipoproteínas/metabolismo , Macrófagos Alveolares/metabolismo , PPAR gama/metabolismo , Isoformas de Proteínas/metabolismo , Surfactantes Pulmonares/metabolismo , Tensoativos/metabolismo
4.
Brief Funct Genomics ; 19(2): 128-138, 2020 03 23.
Artigo em Inglês | MEDLINE | ID: mdl-32025693

RESUMO

A precise three-dimensional (3D) organization of chromatin is central to achieve the intricate transcriptional patterns that are required to form complex organisms. Growing evidence supports an important role of 3D chromatin architecture in development and delineates its alterations as prominent causes of disease. In this review, we discuss emerging concepts on the fundamental forces shaping genomes in space and on how their disruption can lead to pathogenic phenotypes. We describe the molecular mechanisms underlying a wide range of diseases, from the systemic effects of coding mutations on 3D architectural factors, to the more tissue-specific phenotypes resulting from genetic and epigenetic modifications at specific loci. Understanding the connection between the 3D organization of the genome and its underlying biological function will allow a better interpretation of human pathogenesis.


Assuntos
Cromatina/metabolismo , Epigênese Genética/genética , Cromatina/genética , Genoma Humano/genética , Humanos
6.
Nat Genet ; 56(1): 8, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38110718
9.
Nat Genet ; 55(8): 1253, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37558888
10.
Nat Genet ; 55(6): 904, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37308671
11.
Nat Genet ; 55(7): 1082, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37438536
13.
Nat Genet ; 55(12): 2018, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38062098
14.
Nat Genet ; 55(12): 2019, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38062101
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA