Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Cancer Immunol Immunother ; 70(1): 189-202, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-32681241

RESUMO

Triple-negative breast cancer (TNBC) is characterized by a more aggressive clinical course with extensive inter- and intra-tumour heterogeneity. Combination of single-cell and bulk tissue transcriptome profiling allows the characterization of tumour heterogeneity and identifies the association of the immune landscape with clinical outcomes. We identified inter- and intra-tumour heterogeneity at a single-cell resolution. Tumour cells shared a high correlation amongst stemness, angiogenesis, and EMT in TNBC. A subset of cells with concurrent high EMT, stemness and angiogenesis was identified at the single-cell level. Amongst tumour-infiltrating immune cells, M2-like tumour-associated macrophages (TAMs) made up the majority of macrophages and displayed immunosuppressive characteristics. CIBERSORT was applied to estimate the abundance of M2-like TAM in bulk tissue transcriptome file from The Cancer Genome Atlas (TCGA). M2-like TAMs were associated with unfavourable prognosis in TNBC patients. A TAM-related gene signature serves as a promising marker for predicting prognosis and response to immunotherapy. Two commonly used machine learning methods, random forest and SVM, were applied to find the genes that were mostly associated with M2-like TAM densities in the gene signature. A neural network-based deep learning framework based on the TAM-related gene signature exhibits high accuracy in predicting the immunotherapy response.


Assuntos
Neoplasias de Mama Triplo Negativas/genética , Neoplasias de Mama Triplo Negativas/patologia , Macrófagos Associados a Tumor/patologia , Biomarcadores Tumorais/imunologia , Linhagem Celular Tumoral , Feminino , Perfilação da Expressão Gênica/métodos , Heterogeneidade Genética , Humanos , Linfócitos do Interstício Tumoral/patologia , Neovascularização Patológica/genética , Neovascularização Patológica/imunologia , Neovascularização Patológica/patologia , Prognóstico , RNA-Seq/métodos , Transcriptoma/genética , Transcriptoma/imunologia , Neoplasias de Mama Triplo Negativas/imunologia , Microambiente Tumoral/genética , Microambiente Tumoral/imunologia
2.
Biochemistry (Mosc) ; 86(11): 1434-1445, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34906045

RESUMO

Astrocytes are the main homeostatic cells in the central nervous system (CNS) that provide mechanical, metabolic, and trophic support to neurons. Disruption of their physiological role or acquisition of senescence-associated phenotype can contribute to the CNS dysfunction and pathology. However, molecular mechanisms underlying the complex physiology of astrocytes are explored insufficiently. Recent studies have shown that miRNAs are involved in the regulation of astrocyte function through different mechanisms. Although miR-21 has been reported as an astrocytic miRNA with an important role in astrogliosis, no link between this miRNA and cellular senescence of astrocytes has been identified. To address the role of miR-21 in astrocytes, with special focus on cellular senescence, we used NT2/A (astrocytes derived from NT2/D1 cells). Downregulation of miR-21 expression in both immature and mature NT2/A by the antisense technology induced the arrest of cell growth and premature cellular senescence, as indicated by senescence hallmarks such as increased expression of cell cycle inhibitors p21 and p53 and augmented senescence-associated ß-galactosidase activity. Additionally, in silico analysis predicted many of the genes, previously shown to be upregulated in astrocytes with the irradiation-induced senescence, as miR-21 targets. Taken together, our results point to miR-21 as a potential regulator of astrocyte senescence. To the best of our knowledge, these are the first data showing the link between miR-21 and cellular senescence of astrocytes. Since senescent astrocytes are associated with different CNS pathologies, development of novel therapeutic strategies based on miRNA manipulation could prevent senescence and may improve the physiological outcome.


Assuntos
Astrócitos/metabolismo , Ciclo Celular , Senescência Celular , Regulação para Baixo/efeitos dos fármacos , MicroRNAs , Oligonucleotídeos Antissenso , Ciclo Celular/efeitos dos fármacos , Ciclo Celular/genética , Linhagem Celular Tumoral , Senescência Celular/efeitos dos fármacos , Senescência Celular/genética , Humanos , MicroRNAs/antagonistas & inibidores , MicroRNAs/biossíntese , MicroRNAs/genética , Oligonucleotídeos Antissenso/genética , Oligonucleotídeos Antissenso/farmacologia
3.
Int J Mol Sci ; 21(18)2020 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-32957660

RESUMO

Epidemiological studies on workers employed at the Mayak plutonium enrichment plant have demonstrated an association between external gamma ray exposure and an elevated risk of ischemic heart disease (IHD). In a previous study using fresh-frozen post mortem samples of the cardiac left ventricle of Mayak workers and non-irradiated controls, we observed radiation-induced alterations in the heart proteome, mainly downregulation of mitochondrial and structural proteins. As the control group available at that time was younger than the irradiated group, we could not exclude age as a confounding factor. To address this issue, we have now expanded our study to investigate additional samples using archival formalin-fixed paraffin-embedded (FFPE) tissue. Importantly, the control group studied here is older than the occupationally exposed (>500 mGy) group. Label-free quantitative proteomics analysis showed that proteins involved in the lipid metabolism, sirtuin signaling, mitochondrial function, cytoskeletal organization, and antioxidant defense were the most affected. A histopathological analysis elucidated large foci of fibrotic tissue, myocardial lipomatosis and lymphocytic infiltrations in the irradiated samples. These data highlight the suitability of FFPE material for proteomics analysis. The study confirms the previous results emphasizing the role of adverse metabolic changes in the radiation-associated IHD. Most importantly, it excludes age at the time of death as a confounding factor.


Assuntos
Isquemia Miocárdica/metabolismo , Plutônio/efeitos adversos , Proteoma/metabolismo , Proteoma/efeitos da radiação , Cromatografia Líquida , Citoesqueleto/metabolismo , Citoesqueleto/efeitos da radiação , Formaldeído/química , Humanos , Metabolismo dos Lipídeos/efeitos da radiação , Masculino , Mitocôndrias/metabolismo , Mitocôndrias/efeitos da radiação , Isquemia Miocárdica/epidemiologia , Isquemia Miocárdica/etiologia , Isquemia Miocárdica/patologia , Exposição Ocupacional , Inclusão em Parafina , Análise de Componente Principal , Mapas de Interação de Proteínas , Proteômica/métodos , Radiação Ionizante , Transdução de Sinais/efeitos da radiação , Sirtuínas/metabolismo , Espectrometria de Massas em Tandem , Fixação de Tecidos
4.
J Transl Med ; 17(1): 380, 2019 11 20.
Artigo em Inglês | MEDLINE | ID: mdl-31747912

RESUMO

BACKGROUND: Breast cancer is the most common malignancy in female patients worldwide. Because of its heterogeneity in terms of prognosis and therapeutic response, biomarkers with the potential to predict survival or assist in making treatment decisions in breast cancer patients are essential for an individualised therapy. Epigenetic alterations in the genome of the cancer cells, such as changes in DNA methylation pattern, could be a novel marker with an important role in the initiation and progression of breast cancer. METHOD: DNA methylation and RNA-seq datasets from The Cancer Genome Atlas (TCGA) were analysed using the Least Absolute Shrinkage and Selection Operator (LASSO) Cox model. Applying gene ontology (GO) and single sample gene set enrichment analysis (ssGSEA) an epigenetic signature associated with the survival of breast cancer patients was constructed that yields the best discrimination between tumour and normal breast tissue. A predictive nomogram was built for the optimal strategy to distinguish between high- and low-risk cases. RESULTS: The combination of mRNA-expression and of DNA methylation datasets yielded a 13-gene epigenetic signature that identified subset of breast cancer patients with low overall survival. This high-risk group of tumor cases was marked by upregulation of known cancer-related pathways (e.g. mTOR signalling). Subgroup analysis indicated that this epigenetic signature could distinguish high and low-risk patients also in different molecular or histological tumour subtypes (by Her2-, EGFR- or ER expression or different tumour grades). Using Gene Expression Omnibus (GEO) the 13-gene signature was confirmed in four external breast cancer cohorts. CONCLUSION: An epigenetic signature was discovered that effectively stratifies breast cancer patients into low and high-risk groups. Since its efficiency appears independent of other known classifiers (such as staging, histology, metastasis status, receptor status), it has a high potential to further improve likely individualised therapy in breast cancer.


Assuntos
Neoplasias da Mama/genética , Epigênese Genética , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Estudos de Coortes , Metilação de DNA/genética , Bases de Dados Genéticas , Intervalo Livre de Doença , Feminino , Redes Reguladoras de Genes , Genes Neoplásicos , Humanos , Nomogramas , Prognóstico , Modelos de Riscos Proporcionais , Reprodutibilidade dos Testes , Análise de Sobrevida , Transcriptoma/genética
5.
Int J Mol Sci ; 20(13)2019 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-31269745

RESUMO

Pancreatic cancer has a poor prognosis. New treatment options are urgently required to improve patient outcomes. One promising new class of anticancer drugs are synthetic histone deacetylase inhibitors (HDACi) which modulate chromatin structure and gene expression by blocking histone deacetylation. In this study, we aimed at comparing the in vitro capacities of the HDACi SAHA and CUDC-101 to increase radiosensitivity of human pancreatic tumor cell lines. Therefore, three pancreatic cancer cell lines (Su.86.86, MIA Paca-2, T3M-4) were treated with SAHA (1.5-5 µM) or CUDC-101 (0.25-3 µM) and after 24 h irradiated. Cell proliferation, clonogenic survival and apoptosis was determined. Additionally, cell lysates were investigated for the expression of apoptosis-related proteins. CUDC-101 and SAHA increased the radiation sensitivity of pancreatic tumor cell lines in a dose-dependent manner. This was evidenced by cell proliferation and clonogenic survival. Furthermore, enhanced radiation sensitivity after CUDC-101 or SAHA treatment was confirmed for Su.86.86 and T3M-4 cells in a 3-D microtissue approach. Increased amounts of subG1 cells and diminished full length PARP-1 suggest increased radiation-induced apoptosis after SAHA or CUDC-101 treatment. The comparison of both inhibitors in these assays manifested CUDC-101 as more potent radiosensitizer than SAHA. In line, western blot quantification of the apoptosis-inhibitory proteins XIAP and survivin showed a stronger down-regulation in response to CUDC-101 treatment than after SAHA application. These proteins may contribute to the synergy between HDAC inhibition and radiation response. In conclusion, these preclinical results suggest that treatment with the HDAC inhibitors CUDC-101 or SAHA can enhance radiation-induced cytotoxicity in human pancreatic cells. However, comparison of both inhibitors identified the multi target inhibitor CUDC-101 as more potent radiosensitizer than the HDAC inhibitor SAHA.


Assuntos
Inibidores de Histona Desacetilases/farmacologia , Ácidos Hidroxâmicos/farmacologia , Neoplasias Pancreáticas/tratamento farmacológico , Quinazolinas/farmacologia , Radiossensibilizantes/farmacologia , Apoptose/efeitos dos fármacos , Apoptose/efeitos da radiação , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Proliferação de Células/efeitos da radiação , Humanos , Neoplasias Pancreáticas/patologia , Neoplasias Pancreáticas/radioterapia
6.
BMC Cancer ; 15: 466, 2015 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-26059545

RESUMO

BACKGROUND: Radiation resistance presents a challenge to the effective treatment of cancer. If therapeutic compounds were capable of resensitizing resistant tumours then a concurrent chemo-radiation treatment could be used to overcome radiation resistance. METHODS: We have developed a phenotypic assay to investigate the response of radiation resistant breast cancer cells grown in 3D-microtissue spheroids to combinations of radiation and established chemotherapeutic drugs. The effects were quantified by real time high content imaging of GFP detection area over 14 days. Ten established chemotherapeutic drugs were tested for their ability to enhance the effects of radiation. RESULTS: Of ten analysed chemotherapeutics, vinblastine was the most effective compound, with docetaxel and doxorubicine being less effective in combination with radiation. To investigate the response in a model closer to the in vivo situation we investigated the response of heterotypic 3D microtissues containing both fibroblasts and breast cancer cells. Drug treatment of these heterotypic 3D cultures confirmed treatment with radiation plus vinblastine to be additive in causing breast cancer growth inhibition. We have validated the screen by comparing radiation sensitizing effects of known chemotherapeutic agents. In both monotypic and heterotypic models the concurrent treatment of vinblastine and radiation proved more effective inhibitors of mammary cancer cell growth. The effective concentration range of both vinblastine and radiation are within the range used in treatment, suggesting the 3D model will offer a highly relevant screen for novel compounds. CONCLUSIONS: For the first time comfortable 3D cell-based phenotypic assay is available, that allows high throughput screening of compounds with radiation therapy modulating capacity, opening the field to drug discovery.


Assuntos
Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/radioterapia , Técnicas de Cultura de Células/métodos , Tolerância a Radiação/efeitos dos fármacos , Neoplasias da Mama/patologia , Linhagem Celular Tumoral/efeitos dos fármacos , Linhagem Celular Tumoral/efeitos da radiação , Docetaxel , Doxorrubicina/administração & dosagem , Feminino , Fibroblastos/efeitos dos fármacos , Fibroblastos/efeitos da radiação , Humanos , Taxoides/administração & dosagem , Vimblastina/administração & dosagem
7.
Acta Neuropathol ; 126(1): 137-50, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23756599

RESUMO

Gonadotroph adenomas comprise 15-40% of all pituitary tumors, are usually non-functioning and are often large and invasive at presentation. Surgery is the first-choice treatment, but complete resection is not always achieved, leading to high recurrence rates. As gonadotroph adenomas poorly respond to conventional pharmacological therapies, novel treatment strategies are needed. Their identification has been hampered by our incomplete understanding of the molecular pathogenesis of these tumors. Recently, we demonstrated that MENX-affected rats develop gonadotroph adenomas closely resembling their human counterparts. To discover new genes/pathways involved in gonadotroph cells tumorigenesis, we performed transcriptome profiling of rat tumors versus normal pituitary. Adenomas showed overrepresentation of genes involved in cell cycle, development, cell differentiation/proliferation, and lipid metabolism. Bioinformatic analysis identified downstream targets of the transcription factor SF-1 as being up-regulated in rat (and human) adenomas. Meta-analyses demonstrated remarkable similarities between gonadotroph adenomas in rats and humans, and highlighted common dysregulated genes, several of which were not previously implicated in pituitary tumorigenesis. Two such genes, CYP11A1 and NUSAP1, were analyzed in 39 human gonadotroph adenomas by qRT-PCR and found to be up-regulated in 77 and 95% of cases, respectively. Immunohistochemistry detected high P450scc (encoded by CYP11A1) and NuSAP expression in 18 human gonadotroph tumors. In vitro studies demonstrated for the first time that Cyp11a1 is a target of SF-1 in gonadotroph cells and promotes proliferation/survival of rat pituitary adenoma primary cells and cell lines. Our studies reveal clues about the molecular mechanisms driving rat and human gonadotroph adenomas development, and may help identify previously unexplored biomarkers for clinical use.


Assuntos
Adenoma/genética , Adenoma/patologia , Gonadotropinas Hipofisárias/metabolismo , Neoplasias Hipofisárias/genética , Neoplasias Hipofisárias/patologia , Fatores de Transcrição/genética , Animais , Bioestatística , Linhagem Celular Tumoral , Transformação Celular Neoplásica/genética , Enzima de Clivagem da Cadeia Lateral do Colesterol/genética , Enzima de Clivagem da Cadeia Lateral do Colesterol/metabolismo , Biologia Computacional , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica/genética , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Humanos , Análise em Microsséries , Proteínas Associadas aos Microtúbulos/genética , Proteínas Associadas aos Microtúbulos/metabolismo , Interferência de RNA/fisiologia , Ratos , Fatores de Transcrição/metabolismo , Transfecção
8.
Radiat Environ Biophys ; 52(1): 87-98, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23138885

RESUMO

High doses of ionising radiation significantly increase the risk of cardiovascular disease (CVD), the vascular endothelium representing one of the main targets. Whether radiation doses lower than 500 mGy induce cardiovascular damage is controversial. The aim of this study was to investigate radiation-induced expression changes on protein and microRNA (miRNA) level in primary human coronary artery endothelial cells after a single 200 mGy radiation dose (Co-60). Using a multiplex gel-based proteomics technology (2D-DIGE), we identified 28 deregulated proteins showing more than ±1.5-fold expression change in comparison with non-exposed cells. A great majority of the proteins showed up-regulation. Bioinformatics analysis indicated "cellular assembly and organisation, cellular function and maintenance and molecular transport" as the most significant radiation-responsive network. Caspase-3, a central regulator of this network, was confirmed to be up-regulated using immunoblotting. We also analysed radiation-induced alterations in the level of six miRNAs known to play a role either in CVD or in radiation response. The expression of miR-21 and miR-146b showed significant radiation-induced deregulation. Using miRNA target prediction, three proteins found differentially expressed in this study were identified as putative candidates for miR-21 regulation. A negative correlation was observed between miR-21 levels and the predicted target proteins, desmoglein 1, phosphoglucomutase and target of Myb protein. This study shows for the first time that a low-dose exposure has a significant impact on miRNA expression that is directly related to protein expression alterations. The data presented here may facilitate the discovery of low-dose biomarkers of radiation-induced cardiovascular damage.


Assuntos
Células Endoteliais/metabolismo , Raios gama , MicroRNAs/metabolismo , Idoso , Células Cultivadas , Vasos Coronários/citologia , Feminino , Humanos , Proteômica
9.
J Gene Med ; 14(8): 549-60, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22887595

RESUMO

BACKGROUND: Although lentiviral transduction methods are widely used, their broader application is dependent upon the optimization of lentiviral transduction efficiency for a broad range of cell types. In the present study, we focus on the evaluation of two chemical classes with respect to their ability to increase lentiviral transduction without cytotoxicity. METHODS: We compared the activity of adjuvants that are already used for lentivirus delivery with that of novel adjuvants selected on the basis of their chemical and physical characteristics. RESULTS: The novel poloxamer synperonic F108 demonstrated superior characteristics for enhancing lentiviral transduction over the best-in-class polybrene-assisted transduction. The results revealed that poloxamer synperonic F108 exhibited the dual benefits of low toxicity and a high efficiency of lentiviral gene delivery into a range of different primary cell cultures. In the presence of poloxamer synperonic F108, cells showed an increased propidium dye influx indicating a re-organization of membrane microstructures accompanying lentivirus uptake. The administration of a mixture of poloxamer synperonic F108 with polybrene further enhanced lentiviral transduction rates. CONCLUSIONS: The results obtained in the present study indicate that a contribution to efficiency is made by each adjuvant, with polybrene acting as a charge protector and poloxamer synperonic F108 as a membrane modulator. Therefore, poloxamer synperonic F108, either alone or in combination, can lead to the optimization of large-scale lentiviral transduction approaches.


Assuntos
Lentivirus/genética , Polietilenos/farmacologia , Polipropilenos/farmacologia , Tensoativos/farmacologia , Transdução Genética/métodos , Apoptose/efeitos dos fármacos , Membrana Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Citometria de Fluxo , Genes Reporter , Vetores Genéticos , Células HEK293 , Humanos , Leucócitos Mononucleares/metabolismo , Leucócitos Mononucleares/virologia , Luciferases/biossíntese , Luciferases/genética , Permeabilidade , Poliaminas/farmacologia , Poliaminas/toxicidade , Polieletrólitos , Polietilenos/toxicidade , Polipropilenos/toxicidade , Tensoativos/toxicidade
10.
Mutat Res ; 731(1-2): 27-40, 2012 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-22027090

RESUMO

The high doses of radiation received in the wake of the Chernobyl incident and the atomic bombing of Hiroshima and Nagasaki have been linked to the increased appearance of thyroid cancer in the children living in the vicinity of the site. However, the data gathered on the effect of low doses of radiation on the thyroid remain limited. We have examined the genome wide transcriptional response of a culture of TPC-1 human cell line of papillary thyroid carcinoma origin with a RET/PTC1 translocation to various doses (0.0625, 0.5, and 4Gy) of X-rays and compared it to response of thyroids with a RET/PTC3 translocation and against wild-type mouse thyroids irradiated with the same doses using Affymetrix microarrays. We have found considerable overlap at a high dose of 4Gy in both RET/PTC-positive systems but no common genes at 62.5mGy. In addition, the response of RET/PTC-positive system at all doses was distinct from the response of wild-type thyroids with both systems signaling down different pathways. Analysis of the response of microRNAs in TPC-1 cells revealed a radiation-responsive signature of microRNAs in addition to dose-responsive microRNAs. Our results point to the fact that a low dose of X-rays seems to have a significant proliferative effect on normal thyroids. This observation should be studied further as opposed to its effect on RET/PTC-positive thyroids which was subtle, anti-proliferative and system-dependent.


Assuntos
Proteínas de Fusão Oncogênica/metabolismo , Proteínas Tirosina Quinases/metabolismo , Processamento Pós-Transcricional do RNA , Glândula Tireoide/efeitos da radiação , Neoplasias da Glândula Tireoide/genética , Animais , Linhagem Celular , Linhagem Celular Tumoral , Relação Dose-Resposta à Radiação , Expressão Gênica , Humanos , Camundongos , Camundongos Endogâmicos C57BL , MicroRNAs/metabolismo , Neoplasias da Glândula Tireoide/metabolismo , Raios X
11.
Cells ; 11(5)2022 02 23.
Artigo em Inglês | MEDLINE | ID: mdl-35269397

RESUMO

Glioblastoma stem-like cells (GSLCs) in glioblastoma limit effective treatment and promote therapeutic resistance and tumor recurrence. Using a combined radiation and drug-screening platform, we tested the combination of a histone deacetylase inhibitor (HDACi) and MAPK/ERK kinase inhibitor (MEKi) with radiation to predict the efficacy against GSLCs. To mimic a stem-like phenotype, glioblastoma-derived spheres were used and treated with a combination of HDACi (MS-275) and MEKi (TAK-733 or trametinib) with 4 Gy irradiation. The sphere-forming ability after the combined radiochemotherapy was investigated using a sphere formation assay, while the expression levels of the GSLC markers (CD44, Nestin and SOX2) after treatment were analyzed using Western blotting and flow cytometry. The combined radiochemotherapy treatment inhibited the sphere formation in both glioblastoma-derived spheres, decreased the expression of the GSLC markers in a cell-line dependent manner and increased the dead cell population. Finally, we showed that the combined treatment with radiation was more effective at reducing the GSLC markers compared to the standard treatment of temozolomide and radiation. These results suggest that combining HDAC and MEK inhibition with radiation may offer a new strategy to improve the treatment of glioblastoma.


Assuntos
Glioblastoma , Linhagem Celular Tumoral , Glioblastoma/tratamento farmacológico , Glioblastoma/genética , Glioblastoma/radioterapia , Inibidores de Histona Desacetilases/farmacologia , Humanos , Quinases de Proteína Quinase Ativadas por Mitógeno , Recidiva Local de Neoplasia , Inibidores de Proteínas Quinases/farmacologia , Temozolomida/farmacologia
12.
Int J Radiat Biol ; 97(2): 256-264, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33211606

RESUMO

PURPOSE: The MSc Radiation Biology course is a highly interdisciplinary degree program placing radiation biology at the interface between biology, medicine, and physics, as well as their associated technologies. The goal was to establish an internationally acknowledged program with diverse and heterogeneous student cohorts, who benefit from each other academically as well as culturally. We have completed a Five-Year evaluation of the program to assess our qualification profile and the further direction we want to take. MATERIALS AND METHODS: We evaluated the student cohort's data from the last 5 years regarding gender, age, and nationality as well as the highest degree before applying and career path after graduation. RESULTS: Data shows a great diversity regarding nationalty as well as undergraduate background. Cohort sizes could be increased and future prospects mainly aimed to a PhD. Measures after regular quality meetings and students' feedback led to improving the curriculum and workload, teacher's training, and changes to examination regulations. CONCLUSIONS: After 5 years, statistics show that our expectations have been met exceedingly. All graduates had excellent career opportunities reflecting the necessity of this MSc and its topics. We are continuously working on improving the program and adapting the curriculum to the requirements in radiation sciences. The future vision includes an expansion of the program as well as undergraduate education opportunities in this field.


Assuntos
Radiobiologia/educação , Adulto , Currículo , Feminino , Humanos , Masculino
13.
Haematologica ; 95(5): 760-7, 2010 May.
Artigo em Inglês | MEDLINE | ID: mdl-20015877

RESUMO

BACKGROUND: Anaplastic lymphoma kinase (ALK)-positive anaplastic large cell lymphoma is characterized by the t(2;5) chromosomal translocation, resulting in the expression of a fusion protein formed of nucleophosmin (NPM) and ALK. Recently, we reported the abnormal expression of the transcription factor CCAAT/enhancer binding protein-beta (C/EBPbeta) in ALK-positive anaplastic large cell lymphomas, and demonstrated its dependence on NPM-ALK activity. DESIGN AND METHODS: In this study, the role of C/EBPbeta in proliferation and survival of ALK-positive anaplastic large cell lymphomas was investigated, as well as the mechanism of its expression and activity. Highly effective short hairpin RNA sequences and/or pharmacological inhibitors were used to abrogate the expression or activity of C/EBPbeta, signal transducer and activator of transcription 3 (STAT3), AKT, extracellular signal-related kinase 1/2 (ERK1/2) and mammalian target of rapamycin (mTOR). RESULTS: Interference with C/EBPbeta expression resulted in a dramatic decrease in cell proliferation in ALK-positive anaplastic large cell lymphomas, with a mild induction of apoptosis after 6 days. Down-regulation of STAT3 resulted in a marked decrease in C/EBPbeta mRNA and protein levels with impairment in cell proliferation and viability, underscoring the important role of these two proteins in ALK-mediated oncogenesis. Additionally, we demonstrated that reduction of ERK1/2 activity led to C/EBPbeta Thr(235) dephosphorylation and moderate growth retardation. The AKT/mTOR signaling pathway did not have any influence on C/EBPbeta expression or C/EBPbeta phosphorylation. CONCLUSIONS: These findings reveal the convergence of STAT3 and ERK1/2 signaling pathways activated by NPM-ALK in mediating the regulation of C/EBPbeta expression, a transcription factor central to NPM-ALK transformation.


Assuntos
Proteína beta Intensificadora de Ligação a CCAAT/biossíntese , Proliferação de Células , Regulação Neoplásica da Expressão Gênica , Linfoma Anaplásico de Células Grandes/enzimologia , Receptores Proteína Tirosina Quinases/biossíntese , Fator de Transcrição STAT3/fisiologia , Transdução de Sinais , Quinase do Linfoma Anaplásico , Animais , Proteína beta Intensificadora de Ligação a CCAAT/antagonistas & inibidores , Linhagem Celular , Linhagem Celular Transformada , Linhagem Celular Tumoral , Sobrevivência Celular/genética , Regulação para Baixo/genética , Humanos , Linfoma Anaplásico de Células Grandes/patologia , Camundongos , Fator de Transcrição STAT3/antagonistas & inibidores , Transdução de Sinais/genética
14.
Radiat Oncol ; 15(1): 182, 2020 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-32727620

RESUMO

BACKGROUND: We present a functional gene association network of the CLIP2 gene, generated by de-novo reconstruction from transcriptomic microarray data. CLIP2 was previously identified as a potential marker for radiation induced papillary thyroid carcinoma (PTC) of young patients in the aftermath of the Chernobyl reactor accident. Considering the rising thyroid cancer incidence rates in western societies, potentially related to medical radiation exposure, the functional characterization of CLIP2 is of relevance and contributes to the knowledge about radiation-induced thyroid malignancies. METHODS: We generated a transcriptomic mRNA expression data set from a CLIP2-perturbed thyroid cancer cell line (TPC-1) with induced CLIP2 mRNA overexpression and siRNA knockdown, respectively, followed by gene-association network reconstruction using the partial correlation-based approach GeneNet. Furthermore, we investigated different approaches for prioritizing differentially expressed genes for network reconstruction and compared the resulting networks with existing functional interaction networks from the Reactome, Biogrid and STRING databases. The derived CLIP2 interaction partners were validated on transcript and protein level. RESULTS: The best reconstructed network with regard to selection parameters contained a set of 20 genes in the 1st neighborhood of CLIP2 and suggests involvement of CLIP2 in the biological processes DNA repair/maintenance, chromosomal instability, promotion of proliferation and metastasis. Peptidylprolyl Isomerase Like 3 (PPIL3), previously identified as a potential direct interaction partner of CLIP2, was confirmed in this study by co-expression at the transcript and protein level. CONCLUSION: In our study we present an optimized preselection approach for genes subjected to gene-association network reconstruction, which was applied to CLIP2 perturbation transcriptome data of a thyroid cancer cell culture model. Our data support the potential carcinogenic role of CLIP2 overexpression in radiation-induced PTC and further suggest potential interaction partners of the gene.


Assuntos
Redes Reguladoras de Genes , Proteínas Associadas aos Microtúbulos/fisiologia , Neoplasias Induzidas por Radiação/genética , Câncer Papilífero da Tireoide/genética , Neoplasias da Glândula Tireoide/genética , Transcriptoma , Biomarcadores , Humanos , Proteínas Associadas aos Microtúbulos/antagonistas & inibidores , Proteínas Associadas aos Microtúbulos/genética , Neoplasias Induzidas por Radiação/etiologia , Câncer Papilífero da Tireoide/etiologia , Neoplasias da Glândula Tireoide/etiologia
15.
Cancers (Basel) ; 12(12)2020 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-33327491

RESUMO

The miR-221 expression is dependent on the oncogenic RAS-RAF-MEK pathway activation and influences epithelial-to-mesenchymal transition (EMT). The Cancer Genome Atlas (TCGA) database analysis showed high gene significance for ZEB1 with EMT module analysis and miR-221 overexpression within the triple-negative breast cancer (TNBC) and HER2+ subgroups when compared to luminal A/B subgroups. EMT marker expression analysis after MEK1 (TAK-733) inhibitor treatment and irradiation was combined with miR-221 and ZEB1 expression analysis. The interaction of miR-221 overexpression with irradiation and its influence on migration, proliferation, colony formation and subsequent EMT target activation were investigated. The results revealed that MEK1 inhibitor treatment combined with irradiation could decrease the migratory potential of breast cancer cells including reduction of miR-221 and corresponding downstream ZEB1 (EMT) marker expression. The clonogenic survival assays revealed that miR-221 overexpressing SKBR3 cells were more radioresistant when compared to the control. Remarkably, the effect of miR-221 overexpression on migration in highly proliferative and highly HER2-positive SKBR3 cells remained constant even upon 8 Gy irradiation. Further, in naturally miR-221-overexpressing MDA-MB-231 cells, the proliferation and migration significantly decrease after miR-221 knockdown. This leads to the assumption that radiation alone is not reducing migration capacity of miR-221-overexpressing cells and that additional factors play an important role in this context. The miR-221/ZEB1 activity is efficiently targeted upon MEK1 inhibitor (TAK-733) treatment and when combined with irradiation treatment, significant reduction in migration of breast cancer cells was shown.

16.
ACS Cent Sci ; 6(1): 41-53, 2020 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-31989025

RESUMO

Ferroptosis is an iron-dependent form of regulated cell death linking iron, lipid, and glutathione levels to degenerative processes and tumor suppression. By performing a genome-wide activation screen, we identified a cohort of genes antagonizing ferroptotic cell death, including GTP cyclohydrolase-1 (GCH1) and its metabolic derivatives tetrahydrobiopterin/dihydrobiopterin (BH4/BH2). Synthesis of BH4/BH2 by GCH1-expressing cells caused lipid remodeling, suppressing ferroptosis by selectively preventing depletion of phospholipids with two polyunsaturated fatty acyl tails. GCH1 expression level in cancer cell lines stratified susceptibility to ferroptosis, in accordance with its expression in human tumor samples. The GCH1-BH4-phospholipid axis acts as a master regulator of ferroptosis resistance, controlling endogenous production of the antioxidant BH4, abundance of CoQ10, and peroxidation of unusual phospholipids with two polyunsaturated fatty acyl tails. This demonstrates a unique mechanism of ferroptosis protection that is independent of the GPX4/glutathione system.

17.
Int J Radiat Biol ; 95(12): 1627-1639, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31509479

RESUMO

Purpose: Widespread medical use of radiation in diagnosis, imaging and treatment of different central nervous system malignancies lead to various consequences. Aim of this study was to further elucidate mechanism of cell response to radiation and possible consequence on neural differentiation.Materials and methods: NT2/D1 cells that resemble neural progenitors were used as a model system. Undifferentiated NT2/D1 cells and NT2/D1 cells in the early phase of neural differentiation were irradiated with low (0.2 Gy) and moderate (2 Gy) doses of γ radiation. The effect was analyzed on apoptosis, cell cycle, senescence, spheroid formation and the expression of genes and miRNAs involved in the regulation of pluripotency or neural differentiation.Results: Two grays of irradiation induced apoptosis, senescence and cell cycle arrest of NT2/D1 cells, accompanied with altered expression of several genes (SOX2, OCT4, SOX3, PAX6) and miRNAs (miR-219, miR-21, miR124-a). Presented results show that 2 Gy of radiation significantly affected early phase of neural differentiation in vitro.Conclusions: These results suggest that 2 Gy of radiation significantly affected early phase of neural differentiation and affect the population of neural progenitors. These findings might help in better understanding of side effects of radiotherapy in treatments of central nervous system malignancies.


Assuntos
Diferenciação Celular/efeitos da radiação , Células-Tronco Neurais/citologia , Células-Tronco Neurais/efeitos da radiação , Apoptose/efeitos da radiação , Biomarcadores/metabolismo , Contagem de Células , Senescência Celular/efeitos da radiação , Relação Dose-Resposta à Radiação , Regulação da Expressão Gênica/efeitos da radiação , Humanos , MicroRNAs/genética , Células-Tronco Neurais/metabolismo , Fatores de Tempo
18.
Cell Oncol (Dordr) ; 42(1): 41-54, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30209685

RESUMO

PURPOSE: Glioblastoma is the most common and lethal adult brain tumor. Despite current therapeutic strategies, including surgery, radiation and chemotherapy, the median survival of glioblastoma patients is 15 months. The development of this tumor depends on a sub-population of glioblastoma stem cells governing tumor propagation and therapy resistance. SOX3 plays a role in both normal neural development and carcinogenesis. However, little is known about its role in glioblastoma. Thus, the aim of this work was to elucidate the role of SOX3 in glioblastoma. METHODS: SOX3 expression was assessed using real-time quantitative PCR (RT-qPCR), Western blotting and immunohistochemistry. MTT, immunocytochemistry and Transwell assays were used to evaluate the effects of exogenous SOX3 overexpression on the viability, proliferation, migration and invasion of glioblastoma cells, respectively. The expression of Hedgehog signaling pathway components and autophagy markers was assessed using RT-qPCR and Western blot analyses, respectively. RESULTS: Higher levels of SOX3 expression were detected in a subset of primary glioblastoma samples compared to those in non-tumoral brain tissues. Exogenous overexpression of this gene was found to increase the proliferation, viability, migration and invasion of glioblastoma cells. We also found that SOX3 up-regulation was accompanied by an enhanced activity of the Hedgehog signaling pathway and by suppression of autophagy in glioblastoma cells. Additionally, we found that SOX3 expression was elevated in patient-derived glioblastoma stem cells, as well as in oncospheres derived from glioblastoma cell lines, compared to their differentiated counterparts, implying that SOX3 expression is associated with the undifferentiated state of glioblastoma cells. CONCLUSION: From our data we conclude that SOX3 can promote the malignant behavior of glioblastoma cells.


Assuntos
Neoplasias Encefálicas/patologia , Glioblastoma/patologia , Fatores de Transcrição SOXB1/metabolismo , Adulto , Idoso , Idoso de 80 Anos ou mais , Autofagia/efeitos dos fármacos , Autofagia/genética , Neoplasias Encefálicas/genética , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Movimento Celular/genética , Proliferação de Células/efeitos dos fármacos , Proliferação de Células/genética , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/genética , Feminino , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Glioblastoma/genética , Proteínas Hedgehog/metabolismo , Humanos , Masculino , Pessoa de Meia-Idade , Invasividade Neoplásica , Células-Tronco Neoplásicas/efeitos dos fármacos , Células-Tronco Neoplásicas/metabolismo , Fatores de Transcrição SOXB1/genética , Transdução de Sinais/efeitos dos fármacos , Temozolomida/farmacologia , Via de Sinalização Wnt/efeitos dos fármacos , Adulto Jovem
19.
PLoS One ; 13(12): e0209626, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30596717

RESUMO

Previous studies have suggested that exposure to ionizing radiation increases the risk of ischemic heart disease (IHD). The data from the Mayak nuclear worker cohort have indicated enhanced risk for IHD incidence. The goal of this study was to elucidate molecular mechanisms of radiation-induced IHD by integrating proteomics data with a transcriptomics study on post mortem cardiac left ventricle samples from Mayak workers categorized in four radiation dose groups (0 Gy, < 100 mGy, 100-500 mGy, > 500 mGy). The proteomics data that were newly analysed here, originated from a label-free analysis of cardiac samples. The transcriptomics analysis was performed on a subset of these samples. Stepwise linear regression analyses were used to correct the age-dependent changes in protein expression, enabling the separation of proteins, the expression of which was dependent only on the radiation dose, age or both of these factors. Importantly, the majority of the proteins showed only dose-dependent expression changes. Hierarchical clustering of the proteome and transcriptome profiles confirmed the separation of control and high-dose samples. Restrictive (separate p-values) and integrative (combined p-value) approaches were used to investigate the enrichment of biological pathways. The integrative method proved superior in the validation of the key biological pathways found in the proteomics analysis, namely PPAR signalling, TCA cycle and glycolysis/gluconeogenesis. This study presents a novel, improved, and comprehensive statistical approach of analysing biological effects on a limited number of samples.


Assuntos
Perfilação da Expressão Gênica , Isquemia Miocárdica/etiologia , Isquemia Miocárdica/metabolismo , Proteômica , Lesões por Radiação/etiologia , Lesões por Radiação/metabolismo , Biologia Computacional/métodos , Perfilação da Expressão Gênica/métodos , Ontologia Genética , Humanos , Masculino , Isquemia Miocárdica/epidemiologia , Proteômica/métodos , Doses de Radiação , Lesões por Radiação/epidemiologia , Radiação Ionizante , Transdução de Sinais
20.
Biochim Biophys Acta Gene Regul Mech ; 1860(11): 1127-1137, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28851536

RESUMO

The non-coding transcriptome, in particular microRNAs (miRNA), influences cellular survival after irradiation. However, the underlying mechanisms of radiation-induced miRNA expression changes and consequently target expression changes are poorly understood. In this study we show that a single dose of 5Gy ɣ-radiation decreases expression of the miR-23a~27a~24-2 cluster in the human endothelial cell-line EA.hy926 and the mammary epithelial cell-line MCF10A. In the endothelial cells this was facilitated through transcriptional regulation by promoter methylation and also at the post-transcriptional level by reduced miRNA processing through phosphorylation of Argonaute (AGO). Furthermore, we demonstrate that all three mature cluster miRNAs reduce apoptosis by increasing expression of the common target protein XIAP. These findings link a temporal succession of transcriptional and post-transcriptional regulatory mechanisms of the miR~23a~24-2~27a cluster, enabling a dynamic stress response and assuring cellular survival after radiation exposure.


Assuntos
Apoptose , MicroRNAs/genética , Família Multigênica/efeitos da radiação , Estabilidade de RNA , Proteínas Inibidoras de Apoptose Ligadas ao Cromossomo X/genética , Apoptose/genética , Apoptose/efeitos da radiação , Células Cultivadas , Regulação da Expressão Gênica/efeitos da radiação , Células HEK293 , Humanos , Processamento Pós-Transcricional do RNA/efeitos da radiação , Estabilidade de RNA/genética , Estabilidade de RNA/efeitos da radiação , Transdução de Sinais/genética , Transdução de Sinais/efeitos da radiação , Proteínas Inibidoras de Apoptose Ligadas ao Cromossomo X/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA