Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
1.
J Environ Manage ; 246: 909-919, 2019 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-31279248

RESUMO

Non-point nitrogen discharges from agriculture are difficult to regulate, because of the diffuse nature of the pollution. Inflexible and uniform regulation policies have been the solution in many parts of the world. A more targeted and flexible regulation, adjusted to the heterogeneity of hydrological conditions and ambient water quality, as well as the heterogeneity in abatement costs between farms, has been challenging to develop and implement. One reason is the difficulties measuring the hydrological conditions on a detailed spatial scale. One of the most important hydrological factors, which co-determines the load reduction, is the retention (attenuation) of nitrogen in the catchment, from the root zone to the coast. It is therefore critical to understand how uncertainty in retention affects policy recommendations. In this paper, we use a spatial costs-minimization catchment model, TargetEconN, applied to the Danish catchment Limfjorden. The model includes retention, effects of measures and abatement costs at a detailed spatial scale. The model identifies optimal spatial allocation of nitrogen abatement measures at different load reduction targets to the fjord. We use the model to evaluate the sensitivity of the results to different forms of uncertainty in retention by running scenarios. For all scenarios, the total costs, the marginal costs and the distribution of measures are compared, and special emphasis is paid to how uncertainty on the retention affects the cost-effective allocation of abatement measures. The results indicate that taking spatial heterogeneity of retention into account is important to obtain cost-effective nitrogen abatement as this reduces the costs by approximately 25 percent. We assess the importance of uncertainty in the retention estimates by comparing baseline results with the results from model runs using 1) the mean retention estimate for all areas, 2) misspecification of the retention estimates by 10-20 percent in low and high retention areas, and 3) random misspecification of the retention across the catchment. The results indicate that this range of misspecification and uncertainty in retention, does not play a major role for the allocation of measures, nor for the total costs. We conclude that considering spatial heterogeneity in retention is important for cost-effectiveness, and that a policy where retention is included in the allocation of measures is relatively robust towards the uncertainty in the measurements of retention. Uncertainty and misspecification can lead to higher costs for individual farmers. However, for the agricultural community as a whole it is much more costly not to take differences in retention into account.


Assuntos
Nitrogênio , Qualidade da Água , Agricultura , Análise Custo-Benefício , Incerteza
2.
J Environ Qual ; 43(1): 110-20, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25602545

RESUMO

Sediment transport is important for ecology and water quality in receiving waters. Physically based channel erosion methods were implemented in the Soil and Water Assessment Tool version 2009 (SWAT2009) to improve sediment concentration (SS) results. In the study, the default simplified Bagnold sediment routing method (EQN-0) and the physically based simplified Bagnold sediment routing method (EQN-1) were compared with Pareto fronts from multiobjective calibration. Two SWAT models using EQN-0 and EQN-1 were set up for a small agricultural Danish catchment and calibrated with multiobjective calibration on daily and weekly flow-weighted SS (WF SS). Results showed that the Pareto front of EQN-1 was slightly closer to the optimal point than EQN-0 in the objective space. Trade-off between WF SS and daily flow in EQN-1 was smaller than in EQN-0. The EQN-0 method generated more surface erosion to improve WF SS. The EQN-1 method generated more base flow to improve WF SS. The EQN-1 method was less dependent on surface erosion and simulated peak and low values of WF SS better than EQN-0. Therefore, EQN-1 is more suitable than EQN-0 in modeling SS in small lowland catchments.

3.
Ambio ; 43(1): 11-25, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24414801

RESUMO

The Baltic Sea Action Plan (BSAP) requires tools to simulate effects and costs of various nutrient abatement strategies. Hierarchically connected databases and models of the entire catchment have been created to allow decision makers to view scenarios via the decision support system NEST. Increased intensity in agriculture in transient countries would result in increased nutrient loads to the Baltic Sea, particularly from Poland, the Baltic States, and Russia. Nutrient retentions are high, which means that the nutrient reduction goals of 135 000 tons N and 15 000 tons P, as formulated in the BSAP from 2007, correspond to a reduction in nutrient loadings to watersheds by 675 000 tons N and 158 000 tons P. A cost-minimization model was used to allocate nutrient reductions to measures and countries where the costs for reducing loads are low. The minimum annual cost to meet BSAP basin targets is estimated to 4.7 billion Euro.


Assuntos
Eutrofização , Países Bálticos , Alocação de Custos , Modelos Econômicos , Oceanos e Mares
4.
Environ Monit Assess ; 184(3): 1435-48, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-21509511

RESUMO

Increasing human impact on stream ecosystems has resulted in a growing need for tools helping managers to develop conservations strategies, and environmental monitoring is crucial for this development. This paper describes the development of models predicting the presence of fish assemblages in lowland streams using solely cost-effective GIS-derived land use variables. Three hundred thirty-five stream sites were separated into two groups based on size. Within each group, fish abundance data and cluster analysis were used to determine the composition of fish assemblages. The occurrence of assemblages was predicted using a dataset containing land use variables at three spatial scales (50 m riparian corridor, 500 m riparian corridor and the entire catchment) supplemented by a dataset on in-stream variables. The overall classification success varied between 66.1-81.1% and was only marginally better when using in-stream variables than when applying only GIS variables. Also, the prediction power of a model combining GIS and in-stream variables was only slightly better than prediction based solely on GIS variables. The possibility of obtaining precise predictions without using costly in-stream variables offers great potential in the design of monitoring programmes as the distribution of monitoring sites along a gradient in ecological quality can be done at a low cost.


Assuntos
Biodiversidade , Monitoramento Ambiental/economia , Peixes/classificação , Estatística como Assunto , Agricultura/estatística & dados numéricos , Animais , Monitoramento Ambiental/instrumentação , Monitoramento Ambiental/métodos , Peixes/crescimento & desenvolvimento , Sistemas de Informação Geográfica , Modelos Estatísticos , Rios/química , Árvores/classificação , Árvores/crescimento & desenvolvimento , Abastecimento de Água/estatística & dados numéricos
5.
Sci Total Environ ; 787: 147619, 2021 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-34000544

RESUMO

Excess nitrogen (N) losses from intensive agricultural production are a world-wide problem causing eutrophication in vulnerable aquatic ecosystems such as estuaries. Therefore, Denmark as one of the most intensively farmed countries in the world has enforced mandatory regulations on agricultural production since the late 1980s. We demonstrate the outcome of the regulations imposed on agriculture by analyzing decadal trends in nitrate (NO3-) concentrations and loads in streams using 29 years of detailed monitoring data and survey information on agricultural practices at field level from five intensively cultivated headwater catchments. The analysis includes the importance of four main drivers (climate, land use, agricultural practices, and biogeophysical properties of catchments), each divided into different factors that may influence stream NO3- loads during three subperiods defined by the time of introduction of different mitigation measures: i) 1990-1998, ii) 1999-2007, and iii) 2008-2018. Significant correlations with annual flow-weighted stream NO3- concentrations and/or loads were found for factors representing all of the four main drivers including precipitation, large scale climate fluctuations, runoff, previous year's runoff, baseflow index, number of annual frost days, agricultural area, livestock density, field N surplus, catch crop cover, manure storage capacity, method and time of manure spreading, and time of soil tillage. Changes in the four drivers were reflected by the load-runoff (L-Q) relationships for each of the three subperiods within each of the five headwater catchments. The five catchments experienced large but catchment-specific downward shifts in the L-Q relationship attributable to changes in land use and agricultural management within the catchments. The documented large downward shifts in NO3- loads demonstrated for the five catchments (30-52%) as a consequence of mandatory regulation over a period of nearly three decades are a unique example of how agriculture can reduce its environmental impact.

6.
Sci Total Environ ; 706: 135702, 2020 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-31785917

RESUMO

Assessing the impacts of groundwater abstractions on stream ecosystems is crucial for developing water planning and regulations in lowland areas that are highly dependent on groundwater, such as Denmark. To assess the effects of groundwater abstractions on flow regime and stream biota in a lowland groundwater-dominant catchment, we combined the SWAT-MODFLOW model with flow-biota empirical models including indices for three key biological taxonomic identities (fish, macroinvertebrates, and macrophytes). We assessed the effects of the current level of abstractions and also ran a scenario for assessing the effect of extreme groundwater abstractions (pumping rates of the drinking water wells were increased by 20 times in one subbasin of the catchment). Three subbasin outlets representing stream segments of different sizes were used for this evaluation. Current groundwater abstraction level had only minor impacts on the flow regime and stream biotic indices at the three subbasin outlets. The extreme abstractions, however, led to significant impacts on the small stream but had comparatively minor effects on the larger streams. The fish index responded most negatively to the groundwater abstractions, followed by the macrophyte index, decreasing, respectively, by 23.5% and 11.2% in the small stream in the extreme groundwater abstraction scenario. No apparent impact was found on macroinvertebrates in any of the three subbasin outlets. We conclude that this novel approach of a combined modelling system is a useful tool to quantitatively assess the effects of groundwater abstractions on stream biota and thereby support water planning and regulations related to groundwater abstractions. We highlight the need for developing improved biotic models that target specifically small headwater streams, which are often most affected by water abstraction.


Assuntos
Água Subterrânea , Rios , Animais , Biota , Dinamarca , Ecossistema
7.
Sci Total Environ ; 745: 140933, 2020 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-32726701

RESUMO

Climate change may affect stream ecosystems through flow regime alterations, which can be particularly complex in streams with a significant groundwater contribution. To quantify the impacts of climate change on hydrological regime and subsequently the stream biota, we linked SWAT-MODFLOW (A model coupling the Soil and Water Assessment Tool and the Modular Finite-difference Flow Model) with flow-biota empirical models that included indices for three key biological taxonomic identities (fish, macroinvertebrates and macrophytes) and applied the model-complex to a groundwater-dominated catchment in Denmark. Effects of predicted climate change towards the end of this century relative to the reference period (1996-2005) were tested with two contrasting climate change scenarios of different greenhouse gas emissions (Representative Concentration Pathway 2.6 (RCP 2.6) and RCP 8.5) and analysed for all subbasins grouped into streams of three size classes. The total water yield in the catchment did not change significantly (-1 ± 4 (SD) mm yr-1) from the baseline in the RCP2.6 scenario, while it increased by 9 ± 11 mm yr-1 in the RCP8.5 scenario. The three stream size classes underwent different alterations in flow regime and also demonstrated different biotic responses to climate change. All large and some small streams were impacted most heavily by the climate change, where fish and macrophyte indices decreased up to 14.4% and 11.2%, respectively, whereas these indices increased by up to 14.4% and 6.0%, respectively, in the medium and some small streams. The climate change effects were, as expected, larger in the RCP8.5 scenario than in the RCP2.6 scenario. Our study is the first to quantify the impacts of streamflow alterations induced by climate change on stream biota beyond specific species.


Assuntos
Mudança Climática , Água Subterrânea , Animais , Biota , Ecossistema , Modelos Teóricos
8.
Sci Total Environ ; 731: 138935, 2020 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-32428749

RESUMO

This paper studies the relative importance of societal drivers and changing climate on anthropogenic nutrient inputs to the Baltic Sea. Shared Socioeconomic Pathways and Representative Concentration Pathways are extended at temporal and spatial scales relevant for the most contributing sectors. Extended socioeconomic and climate scenarios are then used as inputs for spatially and temporally detailed models for population and land use change, and their subsequent impact on nutrient loading is computed. According to the model simulations, several factors of varying influence may either increase or decrease total nutrient loads. In general, societal drivers outweigh the impacts of changing climate. Food demand is the most impactful driver, strongly affecting land use and nutrient loads from agricultural lands in the long run. In order to reach the good environmental status of the Baltic Sea, additional nutrient abatement efforts should focus on phosphorus rather than nitrogen. Agriculture is the most important sector to be addressed under the conditions of gradually increasing precipitation in the region and increasing global demand for food.

9.
Nat Ecol Evol ; 4(8): 1060-1068, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32541802

RESUMO

Climate and land-use change drive a suite of stressors that shape ecosystems and interact to yield complex ecological responses (that is, additive, antagonistic and synergistic effects). We know little about the spatial scales relevant for the outcomes of such interactions and little about effect sizes. These knowledge gaps need to be filled to underpin future land management decisions or climate mitigation interventions for protecting and restoring freshwater ecosystems. This study combines data across scales from 33 mesocosm experiments with those from 14 river basins and 22 cross-basin studies in Europe, producing 174 combinations of paired-stressor effects on a biological response variable. Generalized linear models showed that only one of the two stressors had a significant effect in 39% of the analysed cases, 28% of the paired-stressor combinations resulted in additive effects and 33% resulted in interactive (antagonistic, synergistic, opposing or reversal) effects. For lakes, the frequencies of additive and interactive effects were similar for all spatial scales addressed, while for rivers these frequencies increased with scale. Nutrient enrichment was the overriding stressor for lakes, with effects generally exceeding those of secondary stressors. For rivers, the effects of nutrient enrichment were dependent on the specific stressor combination and biological response variable. These results vindicate the traditional focus of lake restoration and management on nutrient stress, while highlighting that river management requires more bespoke management solutions.


Assuntos
Ecossistema , Água Doce , Biota , Europa (Continente) , Rios
10.
J Environ Monit ; 11(2): 344-52, 2009 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-19212592

RESUMO

An important step in the implementation of the Water Framework Directive is to define and characterize the natural status, designated as the reference condition (RC). Here we present the results of a type-specific screening for reference stream sites in Denmark using two different approaches. First, we performed a screening applying physicochemical, hydro-morphological and pressure criteria at the catchment, reach and site level of a total of 128 sites a priori selected by the regional water authorities as representing the best sites in Denmark. Second, we performed a GIS screening of all mapped streams in Denmark (26,000 km representing app. 90% of all Danish streams) using solely land use characteristics in the catchment area to target the search for larger stream sites to comply with the WFD requirements of type-specificity. Among the 128 sites we did not find any that fulfilled all criteria applied at the catchment, reach and site level using recommended RC threshold values and only three sites using threshold values that were less strict. Similarly very few km (<1%) of the GIS screened streams fulfilled catchment land use criteria, suggesting that the potential of identifying RC sites in Denmark is very limited. The lack of success in the screening process clearly demonstrates a need for alternative methods to establish RC for Danish streams. We propose a combined approach that includes the development of a guiding image for RC for all the stream biota needed to evaluate the ecological quality. This guiding image should be based on historical data, expert knowledge and investigations in streams situated in countries that are subjected to less intense land use and, at the same time, share both topographical and climatic similarities with Denmark, e.g. the Baltic countries.


Assuntos
Monitoramento Ambiental/métodos , Rios , Conservação dos Recursos Naturais/legislação & jurisprudência , Conservação dos Recursos Naturais/métodos , Dinamarca , Monitoramento Ambiental/legislação & jurisprudência
11.
Ambio ; 48(11): 1264-1277, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31583616

RESUMO

In this study, quantitative models of the agricultural sector and nutrient transport and cycling are used to analyse the impacts in the Baltic Sea of replacing the current Greening measures of the EU's Common Agricultural Policy with a package of investments in manure handling. The investments aim at improving nutrient utilization and reducing nitrogen leaching, based on the assumption that lagging farms and regions can catch up with observed good practice. Our results indicate that such investments could reduce nitrogen surpluses in agriculture by 18% and nitrogen concentrations in the Baltic Sea by 1 to 9% depending on the basin. The Greening measures, in contrast, are found to actually increase nitrogen leaching.


Assuntos
Eutrofização , Esterco , Países Bálticos , Nitrogênio , Nutrientes , Fósforo
12.
Sci Total Environ ; 651(Pt 1): 357-366, 2019 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-30240919

RESUMO

Changes in land use, climate and flow diversion are key drivers of river flow regime change that may eventually affect freshwater biodiversity and ecosystem functions. However, our knowledge is limited on how the functional features of stream organisms vary along the gradient of hydrological disturbance (i.e. flow regime changes) and how flow regimes mediate the functional features in lowland streams. We analyzed the functional traits of benthic diatoms (unicellular siliceous algae) that are most sensitive and tolerant to flow regime changes along a nationwide scale of 246 sites in Denmark. We combined RLQ and fourth-corner analyses to explore the co-variation between hydrological variables (R table) and species traits (Q table), constrained by the relative abundance of each species (L table) as observed in each of the sampling sites. Further, we examine the relationships between functional features (i.e., functional redundancy and diversity) and hydrological variables by multivariate statistical analyses. Results show that species turnover with displacement of sensitive species by tolerant species was the dominating process in benthic diatom communities during high flow disturbances. Functional features, as indicated by functional diversity and redundancy indices, were mediated mainly by high and low flow magnitude. Median daily flow magnitude shows a consistent positive relationship with functional redundancy and richness indices indicating that larger streams are more resilient to flow perturbations. In addition flow regime changes are less important than median daily flow magnitude and show inconsistent correlation to functional features likely due to the interaction of multiple environmental stressors. Our study highlights the robustness of trait-based approaches for identifying flow regime changes in streams, and strongly suggests that biodiversity conservation and water resource management should focus on protecting natural base flow in headwater streams and generally reduce flow regulation for sustaining stream ecosystems under future global changes.


Assuntos
Biodiversidade , Diatomáceas/fisiologia , Rios , Movimentos da Água , Dinamarca
13.
Sci Total Environ ; 668: 470-484, 2019 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-30852223

RESUMO

There are infinite possible future scenarios reflecting the impacts of anthropogenic multiple stress on our planet. These impacts include changes in climate and land cover, to which aquatic ecosystems are especially vulnerable. To assess plausible developments of the future state of European surface waters, we considered two climate scenarios and three storylines describing land use, management and anthropogenic development ('Consensus', 'Techno' and 'Fragmented', which in terms of environmental protection represent best-, intermediate- and worst-case, respectively). Three lake and four river basins were selected, representing a spectrum of European conditions through a range of different human impacts and climatic, geographical and biological characteristics. Using process-based and empirical models, freshwater total nitrogen, total phosphorus and chlorophyll-a concentrations were projected for 2030 and 2060. Under current conditions, the water bodies mostly fail good ecological status. In future predictions for the Techno and Fragmented World, concentrations further increased, while concentrations generally declined for the Consensus World. Furthermore, impacts were more severe for rivers than for lakes. Main pressures identified were nutrient inputs from agriculture, land use change, inadequately managed water abstractions and climate change effects. While the basins in the Continental and Atlantic regions were primarily affected by land use changes, in the Mediterranean/Anatolian the main driver was climate change. The Boreal basins showed combined impacts of land use and climate change and clearly reflected the climate-induced future trend of agricultural activities shifting northward. The storylines showed positive effects on ecological status by classical mitigation measures in the Consensus World (e.g. riparian shading), technical improvements in the Techno World (e.g. increasing wastewater treatment efficiency) and agricultural extensification in the Fragmented World. Results emphasize the need for implementing targeted measures to reduce anthropogenic impacts and the importance of having differing levels of ambition for improving the future status of water bodies depending on the societal future to be expected.

14.
Water Sci Technol ; 58(11): 2173-8, 2008.
Artigo em Inglês | MEDLINE | ID: mdl-19092193

RESUMO

Haderslev Dam is a 272 ha lake in southern Denmark with a high recreational value. For decades the lake has been severely eutrophicated due to excessive phosphorus loading. Major point sources were cut off in the early 1990s and an upstream wetland was recreated. However, the ecological quality remains unsatisfactory. In this study we estimate the importance of agriculture on diffuse phosphorus (P) input to the lake by modelling combined with independent estimates for contributions from scattered dwellings not connected to a sewer and from background losses. We apply a newly developed Danish P index to the lake catchment for mapping of risk areas for diffuse phosphorus losses. For risk areas we suggest mitigation measures and estimate the effect of the mitigation measures on the total P loading of the lake as well as the associated costs.


Assuntos
Água Doce/química , Fósforo/análise , Água/química , Conservação dos Recursos Naturais/economia , Análise Custo-Benefício , Dinamarca , Difusão , Geografia , Projetos Piloto , Propriedades de Superfície
15.
Sci Total Environ ; 581-582: 413-425, 2017 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-28069301

RESUMO

Inter- and intra-annual water level fluctuations and changes in water flow regime are intrinsic characteristics of Mediterranean lakes. Additionally, considering climate change projections for the water-limited Mediterranean region, increased air temperatures and decreased precipitation are anticipated, leading to dramatic declines in lake water levels as well as severe water scarcity problems. The study site, Lake Beysehir, the largest freshwater lake in the Mediterranean basin, is - like other Mediterranean lakes - threatened by climatic changes and over-abstraction of water for irrigated crop farming. Therefore, implementation of strict water level management policies is required. In this study, an integrated modeling approach was used to predict the future water levels of Lake Beysehir in response to potential future changes in climate and land use. Water level estimation was performed by linking the catchment model Soil and Water Assessment Tool (SWAT) with a Support Vector Regression model (ε-SVR). The projected increase in temperature and decrease in precipitation based on the climate change models led to an enhanced potential evapotranspiration and reduced total runoff. On the other hand, the effects of various land use scenarios within the catchment appeared to be comparatively insignificant. According to the ε-SVR model results, changes in hydrological processes caused a water level reduction for all scenarios. Moreover, the MPI-ESM-MR General Circulation Model outputs produced the most dramatic results by predicting that Lake Beysehir may dry out by the 2040s with the current outflow regime. The results indicate that shallow Mediterranean lakes may face a severe risk of drying out and losing their ecosystem values in the near future if the current intensity of water abstraction is not reduced. In addition, the results also demonstrate that outflow management and sustainable use of water sources are vital to sustain lake ecosystems in water-limited regions.

16.
Sci Total Environ ; 365(1-3): 223-37, 2006 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-16647104

RESUMO

The Mike 11-TRANS modelling system was applied to the lowland Gjern river basin in Denmark to assess climate-change impacts on hydrology and nitrogen retention processes in watercourses, lakes and riparian wetlands. Nutrient losses from land to surface waters were assessed using statistical models incorporating the effect of changed hydrology. Climate-change was predicted by the ECHAM4/OPYC General Circulation Model (IPCC A2 scenario) dynamically downscaled by the Danish HIRHAM regional climate model (25 km grid) for two time slices: 1961-1990 (control) and 2071-2100 (scenario). HIRHAM predicts an increase in mean annual precipitation of 47 mm (5%) and an increase in mean annual air temperature of 3.2 degrees C (43%). The HIRHAM predictions were used as external forcings to the rainfall-runoff model NAM, which was set up and run for 6 subcatchments within and for the entire, Gjern river basin. Mean annual runoff from the river basin increases 27 mm (7.5%, p<0.05) when comparing the scenario to the control. Larger changes, however, were found regarding the extremes; runoff during the wettest year in the 30-year period increased by 58 mm (12.3%). The seasonal pattern is expected to change with significantly higher runoff during winter. Summer runoff is expected to increase in predominantly groundwater fed streams and decrease in streams with a low base-flow index. The modelled change in the seasonal hydrological pattern is most pronounced in first- or second-order streams draining loamy catchments, which currently have a low base-flow during the summer period. Reductions of 40-70% in summer runoff are predicted for this stream type. A statistical nutrient loss model was developed for simulating the impact of changed hydrology on diffuse nutrient losses (i.e. losses from land to surface waters) and applied to the river basin. The simulated mean annual changes in TN loads in a loamy and a sandy subcatchment were, respectively, +2.3 kg N ha(-1) (8.5%) and +1.6 kg N ha(-1) (6.9%). The rainfall-runoff model and the nutrient loss model were chained with Mike 11-TRANS to simulate the combined effects of climate-change on hydrology, nutrient losses and nitrogen retention processes at the scale of the river basin. The mean annual TN export from the river basin increased from the control to the scenario period by 7.7%. Even though an increase in nitrogen retention in the river system of 4.2% was simulated in the scenario period, an increased in-stream TN export resulted because of the simulated increase in the diffuse TN transfer from the land to the surface-waters.


Assuntos
Clima , Nitrogênio/análise , Fósforo/análise , Rios/química , Poluentes do Solo/análise , Poluentes da Água/análise , Precipitação Química , Dinamarca , Geografia , Modelos Estatísticos , Nitrogênio/metabolismo , Fósforo/metabolismo , Estações do Ano , Temperatura , Movimentos da Água , Abastecimento de Água
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA