Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
1.
Mol Psychiatry ; 26(10): 6083-6099, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34234281

RESUMO

Familial Parkinson disease (PD) is associated with rare genetic mutations, but the etiology in most patients with sporadic (s)PD is largely unknown, and the basis for its progression to dementia (sPDD) is poorly characterized. We have identified that loss of IFNß or IFNAR1, the receptor for IFNα/ß, causes pathological and behavioral changes resembling PDD, prompting us to hypothesize that dysregulated genes in IFNß-IFNAR signaling pathway predispose one to sPD. By transcriptomic analysis, we found defective neuronal IFNß-IFNAR signaling, including particularly elevated PIAS2 associated with sPDD. With meta-analysis of GWASs, we identified sequence variants in IFNß-IFNAR-related genes in sPD patients. Furthermore, sPDD patients expressed higher levels of PIAS2 mRNA and protein in neurons. To determine its function in brain, we overexpressed PIAS2 under a neuronal promoter, alone or with human α-synuclein, in the brains of mice, which caused motor and cognitive impairments and correlated with intraneuronal phosphorylated (p)α-synuclein accumulation and dopaminergic neuron loss. Ectopic expression of neuronal PIAS2 blocked mitophagy, increased the accumulation of senescent mitochondrial and oxidative stress, as evidenced by excessive oxDJ1 and 8OHdG, by inactivating ERK1/2-P53 signaling. Conversely, PIAS2 knockdown rescued the clinicopathological manifestations of PDD in Ifnb-/- mice on restoring mitochondrial homeostasis, oxidative stress, and pERK1/2-pP53 signaling. The regulation of JAK-STAT2-PIAS2 signaling was crucial for neurite outgrowth and neuronal survival and excitability and thus might prevent cognitive impairments. Our findings provide insights into the progression of sPD and dementia and have implications for new therapeutic approaches.


Assuntos
Demência , Interferon beta/metabolismo , Doença de Parkinson , Proteínas Inibidoras de STAT Ativados , Transdução de Sinais , Animais , Demência/genética , Neurônios Dopaminérgicos/metabolismo , Humanos , Camundongos , Camundongos Knockout , Degeneração Neural , Doença de Parkinson/genética , Proteínas Inibidoras de STAT Ativados/genética , alfa-Sinucleína/metabolismo
2.
Cell Death Dis ; 8(10): e3138, 2017 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-29072691

RESUMO

Hepatocellular carcinoma (HCC) is the third-leading cause of cancer-related death with limited treatment options and frequent resistance to sorafenib, the only drug currently approved for first-line therapy. Therefore, better understanding of HCC tumor biology and its resistance to treatment is urgently needed. Here, we analyzed the role of phosphoprotein enriched in diabetes (PED) in HCC. PED has been shown to regulate cell proliferation, apoptosis and migration in several types of cancer. However, its function in HCC has not been addressed yet. Our study revealed that both transcript and protein levels of PED were significantly high in HCC compared with non-tumoral tissue. Clinico-pathological correlation revealed that PEDhigh HCCs showed an enrichment of gene signatures associated with metastasis and poor prognosis. Further, we observed that PED overexpression elevated the migration potential and PED silencing the decreased migration potential in liver cancer cell lines without effecting cell proliferation. Interestingly, we found that PED expression was regulated by a hepatocyte specific nuclear factor, HNF4α. A reduction of HNF4α induced an increase in PED expression and consequently, promoted cell migration in vitro. Finally, PED reduced the antitumoral effect of sorafenib by inhibiting caspase-3/7 activity. In conclusion, our data suggest that PED has a prominent role in HCC biology. It acts particularly on promoting cell migration and confers resistance to sorafenib treatment. PED may be a novel target for HCC therapy and serve as a predictive marker for treatment response against sorafenib.


Assuntos
Carcinoma Hepatocelular/tratamento farmacológico , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Neoplasias Hepáticas/tratamento farmacológico , Niacinamida/análogos & derivados , Compostos de Fenilureia/administração & dosagem , Fosfoproteínas/metabolismo , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Proteínas Reguladoras de Apoptose , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/patologia , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Criança , Resistencia a Medicamentos Antineoplásicos , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/genética , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patologia , Pessoa de Meia-Idade , Niacinamida/administração & dosagem , Niacinamida/farmacologia , Compostos de Fenilureia/farmacologia , Fosfoproteínas/genética , Sorafenibe , Transfecção , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA