Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
1.
Bioorg Med Chem Lett ; 27(8): 1670-1680, 2017 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-28302397

RESUMO

The emergence and spread of multidrug-resistant (MDR) Gram negative bacteria presents a serious threat for public health. Novel antimicrobials that could overcome the resistance problems are urgently needed. UDP-3-O-(R-3-hydroxymyristol)-N-acetylglucosamine deacetylase (LpxC) is a cytosolic zinc-based deacetylase that catalyzes the first committed step in the biosynthesis of lipid A, which is essential for the survival of Gram-negative bacteria. Our efforts toward the discovery of novel LpxC inhibitors are presented herein.


Assuntos
Amidoidrolases/antagonistas & inibidores , Antibacterianos/química , Antibacterianos/farmacologia , Inibidores Enzimáticos/química , Inibidores Enzimáticos/farmacologia , Bactérias Gram-Negativas/efeitos dos fármacos , Bactérias Gram-Negativas/enzimologia , Amidoidrolases/metabolismo , Descoberta de Drogas , Infecções por Bactérias Gram-Negativas/tratamento farmacológico , Humanos , Simulação de Acoplamento Molecular
2.
Bioorg Med Chem Lett ; 26(4): 1314-8, 2016 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-26786695

RESUMO

Inhibitors of the ATPase function of bacterial DNA gyrase, located in the GyrB subunit and its related ParE subunit in topoisomerase IV, have demonstrated antibacterial activity. In this study we describe an NMR fragment-based screening effort targeting Staphylococcus aureus GyrB that identified several attractive and novel starting points with good ligand efficiency. Fragment hits were further characterized using NMR binding studies against full-length S. aureus GyrB and Escherichia coli ParE. X-ray co-crystal structures of select fragment hits confirmed binding and suggested a path for medicinal chemistry optimization. The identification, characterization, and elaboration of one of these fragment series to a 0.265 µM inhibitor is described herein.


Assuntos
Antibacterianos/química , Proteínas de Bactérias/antagonistas & inibidores , DNA Girase/química , Inibidores da Topoisomerase II/química , Adenosina Trifosfatases/metabolismo , Antibacterianos/metabolismo , Proteínas de Bactérias/metabolismo , Sítios de Ligação , Cristalografia por Raios X , DNA Girase/metabolismo , DNA Topoisomerase IV/antagonistas & inibidores , DNA Topoisomerase IV/metabolismo , Desenho de Fármacos , Escherichia coli/metabolismo , Ligantes , Espectroscopia de Ressonância Magnética , Simulação de Dinâmica Molecular , Ligação Proteica , Estrutura Terciária de Proteína , Staphylococcus aureus/enzimologia , Inibidores da Topoisomerase II/metabolismo
3.
J Med Chem ; 64(19): 14377-14425, 2021 10 14.
Artigo em Inglês | MEDLINE | ID: mdl-34569791

RESUMO

This study describes a novel series of UDP-N-acetylglucosamine acyltransferase (LpxA) inhibitors that was identified through affinity-mediated selection from a DNA-encoded compound library. The original hit was a selective inhibitor of Pseudomonas aeruginosa LpxA with no activity against Escherichia coli LpxA. The biochemical potency of the series was optimized through an X-ray crystallography-supported medicinal chemistry program, resulting in compounds with nanomolar activity against P. aeruginosa LpxA (best half-maximal inhibitory concentration (IC50) <5 nM) and cellular activity against P. aeruginosa (best minimal inhibitory concentration (MIC) of 4 µg/mL). Lack of activity against E. coli was maintained (IC50 > 20 µM and MIC > 128 µg/mL). The mode of action of analogues was confirmed through genetic analyses. As expected, compounds were active against multidrug-resistant isolates. Further optimization of pharmacokinetics is needed before efficacy studies in mouse infection models can be attempted. To our knowledge, this is the first reported LpxA inhibitor series with selective activity against P. aeruginosa.


Assuntos
Aciltransferases/antagonistas & inibidores , Antibacterianos/farmacologia , Descoberta de Drogas , Inibidores Enzimáticos/farmacologia , Pseudomonas aeruginosa/efeitos dos fármacos , Antibacterianos/química , Cristalografia por Raios X , Farmacorresistência Bacteriana/efeitos dos fármacos , Inibidores Enzimáticos/química , Escherichia coli/enzimologia , Testes de Sensibilidade Microbiana , Estrutura Molecular , Relação Estrutura-Atividade
4.
Chem Biol ; 15(3): 295-301, 2008 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-18355729

RESUMO

Chitinase inhibitors have chemotherapeutic potential as fungicides, pesticides, and antiasthmatics. Argifin, a natural product cyclopentapeptide, competitively inhibits family 18 chitinases in the nanomolar to micromolar range and shows extensive substrate mimicry. In an attempt to map the active fragments of this large natural product, the cyclopentapeptide was progressively dissected down to four linear peptides and dimethylguanylurea, synthesized using a combination of solution and solid phase peptide synthesis. The peptide fragments inhibit chitinase B1 from Aspergillus fumigatus (AfChiB1), the human chitotriosidase, and chitinase activity in lung homogenates from a murine model of chronic asthma, with potencies ranging from high nanomolar to high micromolar inhibition. X-ray crystallographic analysis of the chitinase-inhibitor complexes revealed that the conformations of the linear peptides were remarkably similar to that of the natural product. Strikingly, the dimethylguanylurea fragment, representing only a quarter of the natural product mass, was found to harbor all significant interactions with the protein and binds with unusually high efficiency. The data provide useful information that could lead to the generation of drug-like, natural product-based chitinase inhibitors.


Assuntos
Produtos Biológicos/química , Produtos Biológicos/farmacologia , Quitinases/antagonistas & inibidores , Peptídeos Cíclicos/química , Peptídeos Cíclicos/farmacologia , Arginina/análogos & derivados , Arginina/metabolismo , Arginina/farmacologia , Aspergillus fumigatus/enzimologia , Produtos Biológicos/síntese química , Produtos Biológicos/metabolismo , Quitinases/química , Quitinases/metabolismo , Cristalografia por Raios X , Desenho de Fármacos , Oligopeptídeos/síntese química , Oligopeptídeos/química , Oligopeptídeos/metabolismo , Oligopeptídeos/farmacologia , Fragmentos de Peptídeos/metabolismo , Fragmentos de Peptídeos/farmacologia , Peptídeos Cíclicos/síntese química , Peptídeos Cíclicos/metabolismo , Relação Estrutura-Atividade , Ureia/análogos & derivados , Ureia/metabolismo , Ureia/farmacologia
5.
Org Biomol Chem ; 7(2): 259-68, 2009 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-19109670

RESUMO

A new, highly efficient, all-solid-phase synthesis of argifin, a natural product cyclic pentapeptide chitinase inhibitor, is reported. The synthesis features attachment of an orthogonally protected Asp residue to the solid support and assembly of the linear peptide chain by Fmoc SPPS prior to cyclisation and side-chain manipulation on-resin. Introduction of the key N-methyl carbamoyl-substituted Arg side chain is achieved via derivatisation of a selectively protected Orn residue, prior to cleavage from the resin and side-chain deprotection. A severe aspartimide side-reaction observed upon final deprotection is circumvented by the use of a novel aqueous acidolysis procedure. The flexibility of the synthesis is demonstrated by the preparation of a series of argifin analogues designed from the X-ray structure of the natural product in complex with a representative family 18 chitinase.


Assuntos
Quitinases/antagonistas & inibidores , Inibidores Enzimáticos/síntese química , Peptídeos Cíclicos/síntese química , Cristalografia por Raios X , Ciclização , Modelos Moleculares , Relação Estrutura-Atividade
6.
FEBS Open Bio ; 7(7): 1026-1036, 2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-28680815

RESUMO

Mammalian phenylalanine hydroxylase (PAH) is a key enzyme in l-phenylalanine (l-Phe) metabolism and is active as a homotetramer. Biochemical and biophysical work has demonstrated that it cycles between two states with a variably low and a high activity, and that the substrate l-Phe is the key player in this transition. X-ray structures of the catalytic domain have shown mobility of a partially intrinsically disordered Tyr138-loop to the active site in the presence of l-Phe. The mechanism by which the loop dynamics are coupled to substrate binding at the active site in tetrameric PAH is not fully understood. We have here conducted functional studies of four Tyr138 point mutants. A high linear correlation (r2 = 0.99) was observed between their effects on the catalytic efficiency of the catalytic domain dimers and the corresponding effect on the catalytic efficiency of substrate-activated full-length tetramers. In the tetramers, a correlation (r2 = 0.96) was also observed between the increase in catalytic efficiency (activation) and the global conformational change (surface plasmon resonance signal response) at the same l-Phe concentration. The new data support a similar functional importance of the Tyr138-loop in the catalytic domain and the full-length enzyme homotetramer.

7.
Chem Biol ; 12(9): 973-80, 2005 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-16183021

RESUMO

Family 18 chitinases play key roles in a range of pathogenic organisms and are overexpressed in the asthmatic lung. By screening a library of marketed drug molecules, we have identified methylxanthine derivatives as possible inhibitor leads. These derivatives, theophylline, caffeine, and pentoxifylline, are used therapeutically as antiinflammatory agents, with pleiotropic mechanisms of action. Here it is shown that they are also competitive inhibitors against a fungal family 18 chitinase, with pentoxifylline being the most potent (K(i) of 37 microM). Crystallographic analysis of chitinase-inhibitor complexes revealed specific interactions with the active site, mimicking the reaction intermediate analog, allosamidin. Mutagenesis identified the key active site residues, conserved in mammalian chitinases, which contribute to inhibitor affinity. Enzyme assays also revealed that these methylxanthines are active against human chitinases.


Assuntos
Quitinases/antagonistas & inibidores , Inibidores Enzimáticos/farmacologia , Xantinas/farmacologia , Quitinases/metabolismo , Inibidores Enzimáticos/química , Inibidores Enzimáticos/metabolismo , Modelos Moleculares , Estrutura Molecular , Ligação Proteica , Xantinas/química , Xantinas/metabolismo
10.
J Med Chem ; 55(3): 1021-46, 2012 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-22224594

RESUMO

Tissue transglutaminase 2 (TG2) is a multifunctional protein primarily known for its calcium-dependent enzymatic protein cross-linking activity via isopeptide bond formation between glutamine and lysine residues. TG2 overexpression and activity have been found to be associated with Huntington's disease (HD); specifically, TG2 is up-regulated in the brains of HD patients and in animal models of the disease. Interestingly, genetic deletion of TG2 in two different HD mouse models, R6/1 and R6/2, results in improved phenotypes including a reduction in neuronal death and prolonged survival. Starting with phenylacrylamide screening hit 7d, we describe the SAR of this series leading to potent and selective TG2 inhibitors. The suitability of the compounds as in vitro tools to elucidate the biology of TG2 was demonstrated through mode of inhibition studies, characterization of druglike properties, and inhibition profiles in a cell lysate assay.


Assuntos
Acrilamidas/síntese química , Proteínas de Ligação ao GTP/antagonistas & inibidores , Doença de Huntington/tratamento farmacológico , Sulfonamidas/síntese química , Transglutaminases/antagonistas & inibidores , Acrilamidas/química , Acrilamidas/farmacologia , Animais , Células CACO-2 , Permeabilidade da Membrana Celular , Células HEK293 , Humanos , Técnicas In Vitro , Masculino , Camundongos , Microssomos Hepáticos/metabolismo , Modelos Moleculares , Piperazinas/síntese química , Piperazinas/química , Piperazinas/farmacologia , Proteína 2 Glutamina gama-Glutamiltransferase , Piridinas/síntese química , Piridinas/química , Piridinas/farmacologia , Pirimidinas/síntese química , Pirimidinas/química , Pirimidinas/farmacologia , Ratos , Relação Estrutura-Atividade , Sulfonamidas/química , Sulfonamidas/farmacologia
11.
Chem Biol ; 18(5): 569-79, 2011 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-21609838

RESUMO

Acidic mammalian chitinase (AMCase) is produced in the lung during allergic inflammation and asthma, and inhibition of enzymatic activity has been considered as a therapeutic strategy. However, most chitinase inhibitors are nonselective, additionally inhibiting chitotriosidase activity. Here, we describe bisdionin F, a competitive AMCase inhibitor with 20-fold selectivity for AMCase over chitotriosidase, designed by utilizing the AMCase crystal structure and dicaffeine scaffold. In a murine model of allergic inflammation, bisdionin F-treatment attenuated chitinase activity and alleviated the primary features of allergic inflammation including eosinophilia. However, selective AMCase inhibition by bisdionin F also caused dramatic and unexpected neutrophilia in the lungs. This class of inhibitor will be a powerful tool to dissect the functions of mammalian chitinases in disease and represents a synthetically accessible scaffold to optimize inhibitory properties in terms of airway inflammation.


Assuntos
Quitinases/antagonistas & inibidores , Inibidores Enzimáticos/uso terapêutico , Pneumonia/tratamento farmacológico , Xantinas/uso terapêutico , Animais , Sítios de Ligação , Ligação Competitiva , Quitinases/metabolismo , Simulação por Computador , Modelos Animais de Doenças , Inibidores Enzimáticos/química , Eosinófilos/imunologia , Eosinófilos/metabolismo , Feminino , Regulação da Expressão Gênica , Camundongos , Camundongos Endogâmicos BALB C , Neutrófilos/imunologia , Neutrófilos/metabolismo , Pneumonia/patologia , Estrutura Terciária de Proteína , Interferência de RNA , RNA Interferente Pequeno/metabolismo , Xantinas/química
12.
ACS Med Chem Lett ; 2(6): 428-32, 2011 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-24900325

RESUMO

Chitinases of the GH18 family play important roles in a variety of pathogenic organisms and have also been shown to be involved in human asthma progression, making these enzymes potential drug targets. While a number of potent GH18 chitinase inhibitors have been described, in general, these compounds suffer from limited synthetic accessibility or unfavorable medicinal-chemical properties, making them poor starting points for the development of chitinase-targeted drugs. Exploiting available structural data, we have rationally designed bisdionin C, a submicromolar inhibitor of GH18 enzymes, that possesses desirable druglike properties and tractable chemical synthesis. A crystallographic structure of a chitinase-bisdionin C complex shows the two aromatic systems of the ligand interacting with two conserved tryptophan residues exposed in the active site cleft of the enzyme, while at the same time forming extensive hydrogen-bonding interactions with the catalytic machinery. The observed mode of binding, together with inhibition data, suggests that bisdionin C presents an attractive starting point for the development of specific inhibitors of bacterial-type, but not plant-type, GH 18 chitinases.

13.
EMBO J ; 26(8): 2206-17, 2007 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-17396151

RESUMO

N(1)-methyladenine (m(1)A) and N(3)-methylcytosine (m(3)C) are major toxic and mutagenic lesions induced by alkylation in single-stranded DNA. In bacteria and mammals, m(1)A and m(3)C were recently shown to be repaired by AlkB-mediated oxidative demethylation, a direct DNA damage reversal mechanism. No AlkB gene homologues have been identified in Archaea. We report that m(1)A and m(3)C are repaired by the AfAlkA base excision repair glycosylase of Archaeoglobus fulgidus, suggesting a different repair mechanism for these lesions in the third domain of life. In addition, AfAlkA was found to effect a robust excision of 1,N(6)-ethenoadenine. We present a high-resolution crystal structure of AfAlkA, which, together with the characterization of several site-directed mutants, forms a molecular rationalization for the newly discovered base excision activity.


Assuntos
Archaeoglobus fulgidus/genética , Dano ao DNA , DNA Glicosilases/química , DNA Glicosilases/genética , Reparo do DNA/genética , Modelos Moleculares , Sequência de Aminoácidos , Sequência de Bases , Cristalografia por Raios X , Primers do DNA , Dados de Sequência Molecular , Estrutura Molecular , Mutagênese Sítio-Dirigida , Análise de Sequência de DNA
14.
J Biol Chem ; 281(37): 27278-85, 2006 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-16844689

RESUMO

Family 18 chitinases play key roles in the life cycles of a variety of organisms ranging from bacteria to man. Very recently it has been shown that one of the mammalian chitinases is highly overexpressed in the asthmatic lung and contributes to the pathogenic process through recruitment of inflammatory cells. Although several potent natural product chitinase inhibitors have been identified, their chemotherapeutic potential or their use as cell biological tools is limited due to their size, complex chemistry, and limited availability. We describe a virtual screening-based approach to identification of a novel, purine-based, chitinase inhibitor. This inhibitor acts in the low micromolar (Ki=2.8+/-0.2 microM) range in a competitive mode. Dissection of the binding mode by x-ray crystallography reveals that the compound, which consists of two linked caffeine moieties, binds in the active site through extensive and not previously observed stacking interactions with conserved, solvent exposed tryptophans. Such exposed aromatics are also present in the structures of many other carbohydrate processing enzymes. The compound exhibits favorable chemical properties and is likely to be useful as a general scaffold for development of pan-family 18 chitinase inhibitors.


Assuntos
Bioquímica/métodos , Quitinases/antagonistas & inibidores , Inibidores Enzimáticos/química , Algoritmos , Aspergillus fumigatus/enzimologia , Sítios de Ligação , Cafeína/química , Quitinases/química , Biologia Computacional/métodos , Cristalografia por Raios X , Desenho de Fármacos , Inibidores Enzimáticos/farmacologia , Escherichia coli/metabolismo , Modelos Químicos , Modelos Moleculares , Triptofano/química
15.
Bioorg Med Chem Lett ; 15(21): 4717-21, 2005 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-16153835

RESUMO

The first synthesis of the cyclopentapeptide family 18 chitinase inhibitor argifin has been achieved by a combination of solid phase and solution chemistry. Synthetic argifin is a nanomolar inhibitor of chitinase B1 from Aspergillus fumigatus and the high-resolution X-ray structure of the synthesized material in complex with the same enzyme is identical to that previously obtained for the natural product.


Assuntos
Antineoplásicos/síntese química , Quitinases/antagonistas & inibidores , Peptídeos Cíclicos/síntese química , Antineoplásicos/farmacologia , Aspergillus fumigatus/enzimologia , Produtos Biológicos/síntese química , Produtos Biológicos/química , Quitinases/química , Cristalografia por Raios X , Cinética , Modelos Moleculares , Peptídeos Cíclicos/química , Relação Estrutura-Atividade
16.
Eur J Biochem ; 270(5): 929-38, 2003 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-12603326

RESUMO

Two dimensional electrophoresis has revealed a microheterogeneity in the recombinant human phenylalanine hydroxylase (hPAH) protomer, that is the result of spontaneous nonenzymatic deamidations of labile asparagine (Asn) residues [Solstad, T. and Flatmark, T. (2000) Eur. J. Biochem.267, 6302-6310]. Using of a computer algorithm, the relative deamidation rates of all Asn residues in hPAH have been predicted, and we here verify that Asn32, followed by a glycine residue, as well as Asn28 and Asn30 in a loop region of the N-terminal autoregulatory sequence (residues 19-33) of wt-hPAH, are among the susceptible residues. First, on MALDI-TOF mass spectrometry of the 24 h expressed enzyme, the E. coli 28-residue peptide, L15-K42 (containing three Asn residues), was recovered with four monoisotopic mass numbers (i.e., m/z of 3106.455, 3107.470, 3108.474 and 3109.476, of decreasing intensity) that differed by 1 Da. Secondly, by reverse-phase chromatography, isoaspartyl (isoAsp) was demonstrated in this 28-residue peptide by its methylation by protein-l-isoaspartic acid O-methyltransferase (PIMT; EC 2.1.1.77). Thirdly, on incubation at pH 7.0 and 37 degrees C of the phosphorylated form (at Ser16) of this 28-residue peptide, a time-dependent mobility shift from tR approximately 34 min to approximately 31 min (i.e., to a more hydrophilic position) was observed on reverse-phase chromatography, and the recovery of the tR approximately 34 min species decreased with a biphasic time-course with t0.5-values of 1.9 and 6.2 days. The fastest rate is compatible with the rate determined for the sequence-controlled deamidation of Asn32 (in a pentapeptide without 3D structural interference), i.e., a deamidation half-time of approximately 1.5 days in 150 mm Tris/HCl, pH 7.0 at 37 degrees C. Asn32 is located in a cluster of three Asn residues (Asn28, Asn30 and Asn32) of a loop structure stabilized by a hydrogen-bond network. Deamidation of Asn32 introduces a negative charge and a partial beta-isomerization (isoAsp), which is predicted to result in a change in the backbone conformation of the loop structure and a repositioning of the autoregulatory sequence and thus affect its regulatory properties. The functional implications of this deamidation was further studied by site-directed mutagenesis, and the mutant form (Asn32-->Asp) revealed a 1.7-fold increase in the catalytic efficiency, an increased affinity and positive cooperativity of L-Phe binding as well as substrate inhibition.


Assuntos
Amidas/metabolismo , Asparagina/metabolismo , Fenilalanina Hidroxilase/metabolismo , Cromatografia Líquida , Eletroforese em Gel Bidimensional , Humanos , Cinética , Modelos Moleculares , Mutagênese Sítio-Dirigida , Fenilalanina Hidroxilase/química , Fenilalanina Hidroxilase/genética , Fenilalanina Hidroxilase/isolamento & purificação , Fosforilação , Conformação Proteica , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Relação Estrutura-Atividade
17.
Eur J Biochem ; 270(5): 981-90, 2003 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-12603331

RESUMO

The catalytic activity of phenylalanine hydroxylase (PAH, phenylalanine 4-monooxygenase EC 1.14.16.1) is regulated by three main mechanisms, i.e. substrate (l-phenylalanine, L-Phe) activation, pterin cofactor inhibition and phosphorylation of a single serine (Ser16) residue. To address the molecular basis for the inhibition by the natural cofactor (6R)-l-erythro-5,6,7,8-tetrahydrobiopterin, its effects on the recombinant tetrameric human enzyme (wt-hPAH) was studied using three different conformational probes, i.e. the limited proteolysis by trypsin, the reversible global conformational transition (hysteresis) triggered by L-Phe binding, as measured in real time by surface plasmon resonance analysis, and the rate of phosphorylation of Ser16 by cAMP-dependent protein kinase. Comparison of the inhibitory properties of the natural cofactor with the available three-dimensional crystal structure information on the ligand-free, the binary and the ternary complexes, have provided important clues concerning the molecular mechanism for the negative modulatory effects. In the binary complex, the binding of the cofactor at the active site results in the formation of stabilizing hydrogen bonds between the dihydroxypropyl side-chain and the carbonyl oxygen of Ser23 in the autoregulatory sequence. L-Phe binding triggers local as well as global conformational changes of the protomer resulting in a displacement of the cofactor bound at the active site by 2.6 A (mean distance) in the direction of the iron and Glu286 which causes a loss of the stabilizing hydrogen bonds present in the binary complex and thereby a complete reversal of the pterin cofactor as a negative effector. The negative modulatory properties of the inhibitor dopamine, bound by bidentate coordination to the active site iron, is explained by a similar molecular mechanism including its reversal by substrate binding. Although the pterin cofactor and the substrate bind at distinctly different sites, the local conformational changes imposed by their binding at the active site have a mutual effect on their respective binding affinities.


Assuntos
Coenzimas , Dopamina/metabolismo , Metaloproteínas/metabolismo , Fenilalanina Hidroxilase/metabolismo , Pteridinas/metabolismo , Sítios de Ligação , Domínio Catalítico , Humanos , Cofatores de Molibdênio , Fenilalanina Hidroxilase/química , Fenilalanina Hidroxilase/isolamento & purificação , Fosforilação , Proteínas Recombinantes/química , Proteínas Recombinantes/isolamento & purificação , Proteínas Recombinantes/metabolismo , Ressonância de Plasmônio de Superfície
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA