Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 602
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Cell ; 186(8): 1535-1540, 2023 04 13.
Artigo em Inglês | MEDLINE | ID: mdl-37059063

RESUMO

Decades of oncologic clinical use have demonstrated that cancer immunotherapy provides unprecedented therapeutic benefits. Tragically, only a minority of patients respond to existing immunotherapies. RNA lipid nanoparticles have recently emerged as modular tools for immune stimulation. Here, we discuss advancements in RNA-based cancer immunotherapies and opportunities for improvement.


Assuntos
Imunoterapia , Neoplasias , RNA , Humanos , Neoplasias/terapia , RNA/administração & dosagem
2.
Annu Rev Biochem ; 88: 383-408, 2019 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-30939043

RESUMO

The cellular thermal shift assay (CETSA) is a biophysical technique allowing direct studies of ligand binding to proteins in cells and tissues. The proteome-wide implementation of CETSA with mass spectrometry detection (MS-CETSA) has now been successfully applied to discover targets for orphan clinical drugs and hits from phenotypic screens, to identify off-targets, and to explain poly-pharmacology and drug toxicity. Highly sensitive multidimensional MS-CETSA implementations can now also access binding of physiological ligands to proteins, such as metabolites, nucleic acids, and other proteins. MS-CETSA can thereby provide comprehensive information on modulations of protein interaction states in cellular processes, including downstream effects of drugs and transitions between different physiological cell states. Such horizontal information on ligandmodulation in cells is largely orthogonal to vertical information on the levels of different proteins and therefore opens novel opportunities to understand operational aspects of cellular proteomes.


Assuntos
Desenvolvimento de Medicamentos/métodos , Proteoma/metabolismo , Ensaio de Desvio de Mobilidade Eletroforética , Humanos , Ligantes , Espectrometria de Massas , Ligação Proteica , Proteoma/química , Proteômica
3.
Mol Cell ; 82(9): 1768-1777.e3, 2022 05 05.
Artigo em Inglês | MEDLINE | ID: mdl-35358469

RESUMO

Circular RNAs are garnering increasing interest as potential regulatory RNAs and a format for gene expression. The characterization of circular RNA using analytical techniques commonly employed in the literature, such as gel electrophoresis, can, under differing conditions, yield different results when attempting to distinguish circular RNA from linear RNA of similar molecular weights. Here, we describe circular RNA migration in different conditions, analyzed by gel electrophoresis and high-performance liquid chromatography (HPLC). We characterize key parameters that affect the migration pattern of circular RNA in gel electrophoresis systems, which include gel type, electrophoresis time, sample buffer composition, and voltage. Finally, we demonstrate the utility of orthogonal analytical tests for circular RNA that take advantage of its covalently closed structure to further distinguish circular RNA from linear RNA following in vitro synthesis.


Assuntos
RNA Circular , RNA , Eletroforese em Gel de Ágar/métodos , Peso Molecular , RNA/genética , RNA Circular/genética
4.
Cell ; 159(2): 440-55, 2014 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-25263330

RESUMO

CRISPR-Cas9 is a versatile genome editing technology for studying the functions of genetic elements. To broadly enable the application of Cas9 in vivo, we established a Cre-dependent Cas9 knockin mouse. We demonstrated in vivo as well as ex vivo genome editing using adeno-associated virus (AAV)-, lentivirus-, or particle-mediated delivery of guide RNA in neurons, immune cells, and endothelial cells. Using these mice, we simultaneously modeled the dynamics of KRAS, p53, and LKB1, the top three significantly mutated genes in lung adenocarcinoma. Delivery of a single AAV vector in the lung generated loss-of-function mutations in p53 and Lkb1, as well as homology-directed repair-mediated Kras(G12D) mutations, leading to macroscopic tumors of adenocarcinoma pathology. Together, these results suggest that Cas9 mice empower a wide range of biological and disease modeling applications.


Assuntos
Adenocarcinoma/genética , Modelos Animais de Doenças , Genes Supressores de Tumor , Engenharia Genética/métodos , Neoplasias Pulmonares/genética , Oncogenes , Animais , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Células Dendríticas/metabolismo , Técnicas de Introdução de Genes , Vetores Genéticos , Lentivirus , Camundongos , Camundongos Transgênicos
5.
Nature ; 604(7906): 474-478, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35444324

RESUMO

Three-dimensional (3D) printing has exploded in interest as new technologies have opened up a multitude of applications1-6, with stereolithography a particularly successful approach4,7-9. However, owing to the linear absorption of light, this technique requires photopolymerization to occur at the surface of the printing volume, imparting fundamental limitations on resin choice and shape gamut. One promising way to circumvent this interfacial paradigm is to move beyond linear processes, with many groups using two-photon absorption to print in a truly volumetric fashion3,7-9. Using two-photon absorption, many groups and companies have been able to create remarkable nanoscale structures4,5, but the laser power required to drive this process has limited print size and speed, preventing widespread application beyond the nanoscale. Here we use triplet fusion upconversion10-13 to print volumetrically with less than 4 milliwatt continuous-wave excitation. Upconversion is introduced to the resin by means of encapsulation with a silica shell and solubilizing ligands. We further introduce an excitonic strategy to systematically control the upconversion threshold to support either monovoxel or parallelized printing schemes, printing at power densities several orders of magnitude lower than the power densities required for two-photon-based 3D printing.

6.
Nature ; 592(7853): 195-204, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33828315

RESUMO

The move from reading to writing the human genome offers new opportunities to improve human health. The United States National Institutes of Health (NIH) Somatic Cell Genome Editing (SCGE) Consortium aims to accelerate the development of safer and more-effective methods to edit the genomes of disease-relevant somatic cells in patients, even in tissues that are difficult to reach. Here we discuss the consortium's plans to develop and benchmark approaches to induce and measure genome modifications, and to define downstream functional consequences of genome editing within human cells. Central to this effort is a rigorous and innovative approach that requires validation of the technology through third-party testing in small and large animals. New genome editors, delivery technologies and methods for tracking edited cells in vivo, as well as newly developed animal models and human biological systems, will be assembled-along with validated datasets-into an SCGE Toolkit, which will be disseminated widely to the biomedical research community. We visualize this toolkit-and the knowledge generated by its applications-as a means to accelerate the clinical development of new therapies for a wide range of conditions.


Assuntos
Células/metabolismo , Edição de Genes/métodos , Genoma Humano/genética , National Institutes of Health (U.S.)/organização & administração , Animais , Terapia Genética , Objetivos , Humanos , Estados Unidos
7.
Mol Cell ; 74(3): 508-520.e4, 2019 05 02.
Artigo em Inglês | MEDLINE | ID: mdl-30902547

RESUMO

Circular RNAs (circRNAs) are a class of single-stranded RNAs with a contiguous structure that have enhanced stability and a lack of end motifs necessary for interaction with various cellular proteins. Here, we show that unmodified exogenous circRNA is able to bypass cellular RNA sensors and thereby avoid provoking an immune response in RIG-I and Toll-like receptor (TLR) competent cells and in mice. The immunogenicity and protein expression stability of circRNA preparations are found to be dependent on purity, with small amounts of contaminating linear RNA leading to robust cellular immune responses. Unmodified circRNA is less immunogenic than unmodified linear mRNA in vitro, in part due to the evasion of TLR sensing. Finally, we provide the first demonstration to our knowledge of exogenous circRNA delivery and translation in vivo, and we show that circRNA translation is extended in adipose tissue in comparison to unmodified and uridine-modified linear mRNAs.


Assuntos
Proteína DEAD-box 58/genética , Biossíntese de Proteínas , RNA Mensageiro/genética , RNA/genética , Animais , Proteína DEAD-box 58/imunologia , Regulação da Expressão Gênica , Redes Reguladoras de Genes/genética , Imunidade Inata/genética , Camundongos , MicroRNAs/genética , RNA Circular , Receptores Toll-Like/genética , Receptores Toll-Like/imunologia , Uridina/genética , Vacinas Sintéticas/genética
8.
Proc Natl Acad Sci U S A ; 121(11): e2307798120, 2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38437569

RESUMO

Nanoparticle-based RNA delivery has shown great progress in recent years with the approval of two mRNA vaccines for Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) and a liver-targeted siRNA therapy. Here, we discuss the preclinical and clinical advancement of new generations of RNA delivery therapies along multiple axes. Improvements in cargo design such as RNA circularization and data-driven untranslated region optimization can drive better mRNA expression. New materials discovery research has driven improved delivery to extrahepatic targets such as the lung and splenic immune cells, which could lead to pulmonary gene therapy and better cancer vaccines, respectively. Other organs and even specific cell types can be targeted for delivery via conjugation of small molecule ligands, antibodies, or peptides to RNA delivery nanoparticles. Moreover, the immune response to any RNA delivery nanoparticle plays a crucial role in determining efficacy. Targeting increased immunogenicity without induction of reactogenic side effects is crucial for vaccines, while minimization of immune response is important for gene therapies. New developments have addressed each of these priorities. Last, we discuss the range of RNA delivery clinical trials targeting diverse organs, cell types, and diseases and suggest some key advances that may play a role in the next wave of therapies.


Assuntos
Anticorpos , Vacinas Anticâncer , RNA Interferente Pequeno/genética , Terapia Genética , Fígado , SARS-CoV-2/genética
9.
Proc Natl Acad Sci U S A ; 120(40): e2311707120, 2023 10 03.
Artigo em Inglês | MEDLINE | ID: mdl-37738292

RESUMO

The immune isolation of cells within devices has the potential to enable long-term protein replacement and functional cures for a range of diseases, without requiring immune suppressive therapy. However, a lack of vasculature and the formation of fibrotic capsules around cell immune-isolating devices limits oxygen availability, leading to hypoxia and cell death in vivo. This is particularly problematic for pancreatic islet cells that have high O2 requirements. Here, we combine bioelectronics with encapsulated cell therapies to develop the first wireless, battery-free oxygen-generating immune-isolating device (O2-Macrodevice) for the oxygenation and immune isolation of cells in vivo. The system relies on electrochemical water splitting based on a water-vapor reactant feed, sustained by wireless power harvesting based on a flexible resonant inductive coupling circuit. As such, the device does not require pumping, refilling, or ports for recharging and does not generate potentially toxic side products. Through systematic in vitro studies with primary cell lines and cell lines engineered to secrete protein, we demonstrate device performance in preventing hypoxia in ambient oxygen concentrations as low as 0.5%. Importantly, this device has shown the potential to enable subcutaneous (SC) survival of encapsulated islet cells, in vivo in awake, freely moving, immune-competent animals. Islet transplantation in Type I Diabetes represents an important application space, and 1-mo studies in immune-competent animals with SC implants show that the O2-Macrodevice allows for survival and function of islets at high densities (~1,000 islets/cm2) in vivo without immune suppression and induces normoglycemia in diabetic animals.


Assuntos
Hipóxia , Oxigênio , Animais , Hipóxia/terapia , Morte Celular , Linhagem Celular , Terapia Baseada em Transplante de Células e Tecidos
10.
Proc Natl Acad Sci U S A ; 120(25): e2215711120, 2023 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-37310997

RESUMO

Multiple myeloma (MM), a hematologic malignancy that preferentially colonizes the bone marrow, remains incurable with a survival rate of 3 to 6 mo for those with advanced disease despite great efforts to develop effective therapies. Thus, there is an urgent clinical need for innovative and more effective MM therapeutics. Insights suggest that endothelial cells within the bone marrow microenvironment play a critical role. Specifically, cyclophilin A (CyPA), a homing factor secreted by bone marrow endothelial cells (BMECs), is critical to MM homing, progression, survival, and chemotherapeutic resistance. Thus, inhibition of CyPA provides a potential strategy to simultaneously inhibit MM progression and sensitize MM to chemotherapeutics, improving therapeutic response. However, inhibiting factors from the bone marrow endothelium remains challenging due to delivery barriers. Here, we utilize both RNA interference (RNAi) and lipid-polymer nanoparticles to engineer a potential MM therapy, which targets CyPA within blood vessels of the bone marrow. We used combinatorial chemistry and high-throughput in vivo screening methods to engineer a nanoparticle platform for small interfering RNA (siRNA) delivery to bone marrow endothelium. We demonstrate that our strategy inhibits CyPA in BMECs, preventing MM cell extravasation in vitro. Finally, we show that siRNA-based silencing of CyPA in a murine xenograft model of MM, either alone or in combination with the Food and Drug Administration (FDA)-approved MM therapeutic bortezomib, reduces tumor burden and extends survival. This nanoparticle platform may provide a broadly enabling technology to deliver nucleic acid therapeutics to other malignancies that home to bone marrow.


Assuntos
Mieloma Múltiplo , Estados Unidos , Humanos , Animais , Camundongos , Mieloma Múltiplo/tratamento farmacológico , Mieloma Múltiplo/genética , Medula Óssea , RNA Interferente Pequeno/genética , Células Endoteliais , Ciclofilina A , Lipídeos , Microambiente Tumoral
11.
Proc Natl Acad Sci U S A ; 120(34): e2209735120, 2023 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-37579162

RESUMO

The hydroxyl radical (OH) fuels atmospheric chemical cycling as the main sink for methane and a driver of the formation and loss of many air pollutants, but direct OH observations are sparse. We develop and evaluate an observation-based proxy for short-term, spatial variations in OH (ProxyOH) in the remote marine troposphere using comprehensive measurements from the NASA Atmospheric Tomography (ATom) airborne campaign. ProxyOH is a reduced form of the OH steady-state equation representing the dominant OH production and loss pathways in the remote marine troposphere, according to box model simulations of OH constrained with ATom observations. ProxyOH comprises only eight variables that are generally observed by routine ground- or satellite-based instruments. ProxyOH scales linearly with in situ [OH] spatial variations along the ATom flight tracks (median r2 = 0.90, interquartile range = 0.80 to 0.94 across 2-km altitude by 20° latitudinal regions). We deconstruct spatial variations in ProxyOH as a first-order approximation of the sensitivity of OH variations to individual terms. Two terms modulate within-region ProxyOH variations-water vapor (H2O) and, to a lesser extent, nitric oxide (NO). This implies that a limited set of observations could offer an avenue for observation-based mapping of OH spatial variations over much of the remote marine troposphere. Both H2O and NO are expected to change with climate, while NO also varies strongly with human activities. We also illustrate the utility of ProxyOH as a process-based approach for evaluating intermodel differences in remote marine tropospheric OH.

12.
Nat Mater ; 2024 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-38740955

RESUMO

To unlock the full promise of messenger (mRNA) therapies, expanding the toolkit of lipid nanoparticles is paramount. However, a pivotal component of lipid nanoparticle development that remains a bottleneck is identifying new ionizable lipids. Here we describe an accelerated approach to discovering effective ionizable lipids for mRNA delivery that combines machine learning with advanced combinatorial chemistry tools. Starting from a simple four-component reaction platform, we create a chemically diverse library of 584 ionizable lipids. We screen the mRNA transfection potencies of lipid nanoparticles containing those lipids and use the data as a foundational dataset for training various machine learning models. We choose the best-performing model to probe an expansive virtual library of 40,000 lipids, synthesizing and experimentally evaluating the top 16 lipids flagged. We identify lipid 119-23, which outperforms established benchmark lipids in transfecting muscle and immune cells in several tissues. This approach facilitates the creation and evaluation of versatile ionizable lipid libraries, advancing the formulation of lipid nanoparticles for precise mRNA delivery.

13.
Small ; 20(23): e2307464, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38212275

RESUMO

The transplantation of immunoisolated stem cell derived beta cell clusters (SC-ß) has the potential to restore physiological glycemic control in patients with type I diabetes. This strategy is attractive as it uses a renewable ß-cell source without the need for systemic immune suppression. SC-ß cells have been shown to reverse diabetes in immune compromised mice when transplanted as ≈300 µm diameter clusters into sites where they can become revascularized. However, immunoisolated SC-ß clusters are not directly revascularized and rely on slower diffusion of nutrients through a membrane. It is hypothesized that smaller SC-ß cell clusters (≈150 µm diameter), more similar to islets, will perform better within immunoisolation devices due to enhanced mass transport. To test this, SC-ß cells are resized into small clusters, encapsulated in alginate spheres, and coated with a biocompatible A10 polycation coating that resists fibrosis. After transplantation into diabetic immune competent C57BL/6 mice, the "resized" SC-ß cells plus the A10 biocompatible polycation coating induced long-term euglycemia in the mice (6 months). After retrieval, the resized A10 SC-ß cells exhibited the least amount of fibrosis and enhanced markers of ß-cell maturation. The utilization of small SC-ß cell clusters within immunoprotection devices may improve clinical translation in the future.


Assuntos
Células Secretoras de Insulina , Animais , Humanos , Células Secretoras de Insulina/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Diabetes Mellitus Experimental , Células-Tronco/citologia , Células-Tronco/metabolismo , Diabetes Mellitus Tipo 1/terapia
14.
Proc Biol Sci ; 291(2019): 20232885, 2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38503337

RESUMO

The ecosystem services provided by dung beetles are well known and valued. Dung beetles bury dung for feeding and breeding, and it is generally thought that the process of burying dung increases nutrient uptake by plant roots, which promotes plant growth. Many studies have tested the effects of dung beetles on plant growth, but there has been no quantitative synthesis of these studies. Here we use a multi-level meta-analysis to estimate the average effect of dung beetles on plant growth and investigate factors that moderate this effect. We identified 28 publications that investigated dung beetle effects on plant growth. Of these, 24 contained the minimum quantitative data necessary to include in a meta-analysis. Overall, we found that dung beetles increased plant growth by 17%; the 95% CI for possible values for the true increase in plant growth that were most compatible with our data, given our statistical model, ranged from 1% to 35%. We found evidence that the dung beetle-plant growth relationship is influenced by the plant measurement type and the number of beetles accessing the dung. However, beetles did not increase plant growth in all quantitative trials, as individual effect sizes ranged from -72% to 806%, suggesting important context-dependence in the provision of ecosystem services.


Assuntos
Besouros , Ecossistema , Animais , Melhoramento Vegetal , Plantas , Fezes
15.
J Theor Biol ; 579: 111687, 2024 02 21.
Artigo em Inglês | MEDLINE | ID: mdl-38103677

RESUMO

We develop a mathematical model for photoreceptors in the retina. We focus on rod and cone outer segment dynamics and interactions with a nutrient source associated with the retinal pigment epithelium cells. Rod and cone densities (number per unit area of retinal surface) are known to have significant spatial dependence in the retina with cones located primarily near the fovea and the rods located primarily away from the fovea. Our model accounts for this spatial dependence of the rod and cone photoreceptor density as well as for the possibility of nutrient diffusion. We present equilibrium and dynamic solutions, discuss their relation to existing models, and estimate model parameters through comparisons with available experimental measurements of both spatial and temporal photoreceptor characteristics. Our model compares well with existing data on spatially-dependent regrowth of photoreceptor outer segments in the macular region of Rhesus Monkeys. Our predictions are also consistent with existing data on the spatial dependence of photoreceptor outer segment length near the fovea in healthy human subjects. We focus primarily on the healthy eye but our model could be the basis for future efforts designed to explore various retinal pathologies, eye-related injuries, and treatments of these conditions.


Assuntos
Retina , Células Fotorreceptoras Retinianas Cones , Animais , Humanos , Células Fotorreceptoras Retinianas Cones/patologia , Células Fotorreceptoras , Macaca mulatta
16.
Ann Pharmacother ; : 10600280241231611, 2024 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-38347703

RESUMO

BACKGROUND: Short courses of antibiotics (7-10 days) are effective for uncomplicated gram-negative bloodstream infections (GN-BSI). However, prior studies have been limited to small cohorts of critically ill patients. OBJECTIVE: The objective of this study was to evaluate the safety and efficacy of short courses of therapy compared with longer courses in patients admitted to the intensive care unit (ICU) with GN-BSI. METHODS: Propensity-matched, retrospective cohort study of critically ill patients with GN-BSI. The primary outcome was a composite of 30-day mortality or 60-day relapse. Secondary endpoints were components of the composite, 30-day relapse, cure with or without adverse drug events (ADE), and ADEs. Regression analysis was performed to identify factors predictive of the composite outcome. RESULTS: 225 patients were included in the propensity analysis, 145 in the long cohort and 80 in the short cohort. The primary outcome occurred in 3.8% of patients in the short group and 9.0% of patients in the long group (P = 0.24). There was no difference in 30-day mortality (3.8% vs 5.5%, P = 0.79), 60-day relapse (0% vs 3.4%, P = 0.23), or 30-day readmission (20% vs 22.8%, P = 0.76). ADEs were more common in the long group (47.2% vs 34.1%, OR 1.7, 95% CI 1.04-2.9), primarily attributable to diarrhea. CONCLUSION AND RELEVANCE: In critically ill patients with GN-BSI, there were no efficacy outcome differences in patients treated with a short course of antibiotics compared with longer. However, patients in the short group were less likely to experience ADE. These findings suggest that short courses of antibiotics are effective for GN-BSI in critically ill patients.

17.
Ann Pharmacother ; : 10600280241260146, 2024 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-38887006

RESUMO

BACKGROUND: Intravenous (IV) antibiotics have historically been considered standard of care for treatment of bloodstream infections (BSIs). Recent literature has shown sequential oral (PO) therapy to be noninferior to IV antibiotics for certain pathogens and disease states. However, a gap exists in the literature for BSI caused by Enterococcus faecalis. OBJECTIVE: To compare outcomes of definitive sequential PO therapy to definitive IV therapy in patients with E faecalis BSI. METHODS: Multicenter, retrospective, matched cohort study of adult patients with at least one blood culture positive for E faecalis from January 2017 to November 2022. Patients with polymicrobial BSI, concomitant infections requiring prolonged IV antibiotic therapy, those who did not receive antibiotic therapy, and those who died within 72 hours of index culture were excluded. Subjects were matched based on source of infection in a 2:1 (IV:PO) ratio. The primary outcome was a composite of all-cause mortality and treatment failure. Secondary outcomes included hospital length of stay (LOS), antibiotic duration, and 30-day readmission rate. RESULTS: Of the 186 patients who met criteria for inclusion, there was no statistically significant difference in the primary composite outcome for PO compared to IV therapy (14.5% vs 21.8%; OR 0.53 [0.23-1.25]) or 30-day readmission (17.5% vs 29%; OR 0.53 [0.25-1.13]). Hospital LOS was significantly longer in patients receiving IV-only therapy (6 days vs 14 days; P < 0.001). CONCLUSION AND RELEVANCE: Sequential oral therapy for E faecalis BSI had similar outcomes compared to IV-only treatment and may be considered in eligible patients.

18.
Mol Ther ; 31(7): 1979-1993, 2023 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-37012705

RESUMO

Success in the treatment of infants with spinal muscular atrophy (SMA) underscores the potential of vectors based on adeno-associated virus (AAV). However, a major obstacle to the full realization of this potential is pre-existing natural and therapy-induced anti-capsid humoral immunity. Structure-guided capsid engineering is one possible approach to surmounting this challenge but necessitates an understanding of capsid-antibody interactions at high molecular resolution. Currently, only mouse-derived monoclonal antibodies (mAbs) are available to structurally map these interactions, which presupposes that mouse and human-derived antibodies are functionally equivalent. In this study, we have characterized the polyclonal antibody responses of infants following AAV9-mediated gene therapy for SMA and recovered 35 anti-capsid mAbs from the abundance of switched-memory B (smB) cells present in these infants. For 21 of these mAbs, seven from each of three infants, we have undertaken functional and structural analysis measuring neutralization, affinities, and binding patterns by cryoelectron microscopy (cryo-EM). Four distinct patterns were observed akin to those reported for mouse-derived mAbs, but with early evidence of differing binding pattern preference and underlying molecular interactions. This is the first human and largest series of anti-capsid mAbs to have been comprehensively characterized and will prove to be powerful tools for basic discovery and applied purposes.


Assuntos
Anticorpos Monoclonais , Capsídeo , Lactente , Humanos , Animais , Camundongos , Anticorpos Monoclonais/uso terapêutico , Anticorpos Monoclonais/genética , Microscopia Crioeletrônica , Capsídeo/química , Proteínas do Capsídeo/química , Dependovirus , Terapia Genética , Vetores Genéticos/genética
19.
Nano Lett ; 23(7): 2938-2944, 2023 04 12.
Artigo em Inglês | MEDLINE | ID: mdl-36988645

RESUMO

Ex vivo autologous hematopoietic stem cell (HSC) gene therapy has provided new therapies for the treatment of hematological disorders. However, these therapies have several limitations owing to the manufacturing complexities and toxicity resulting from required conditioning regimens. Here, we developed a c-kit (CD117) antibody-targeted lipid nanoparticle (LNP) that, following a single intravenous injection, can deliver RNA (both siRNA and mRNA) to HSCs in vivo in rodents. This targeted delivery system does not require stem cell harvest, culture, or mobilization of HSCs to facilitate delivery. We also show that delivery of Cre recombinase mRNA at a dose of 1 mg kg-1 can facilitate gene editing to almost all (∼90%) hematopoietic stem and progenitor cells (HSPCs) in vivo, and edited cells retain their stemness and functionality to generate high levels of edited mature immune cells.


Assuntos
Transplante de Células-Tronco Hematopoéticas , Transplante de Células-Tronco Hematopoéticas/métodos , Células-Tronco Hematopoéticas/metabolismo , RNA Interferente Pequeno , RNA Mensageiro/metabolismo
20.
Pediatr Exerc Sci ; 35(1): 48-60, 2023 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-35894965

RESUMO

PURPOSE: Regular physical activity (PA) is a cornerstone therapy for many childhood chronic health conditions, and questionnaires offer a simple method for monitoring PA and identifying children who do not meet clinical practice guidelines. The purpose of this systematic review is to determine which questionnaires are most efficacious for assessing PA in children with chronic health conditions. METHODS: Systematic literature searches were conducted through ProQuest, MEDLINE, Scopus, and SPORTDiscus from January 2010 to August 2020 to identify studies that measured PA with a validated questionnaire in children and adolescents aged 3-18 years old with chronic health conditions. In eligible studies, the validity and reliability of questionnaires were identified, and the modified COnsensus-based Standards for the selection of health status Measurement INstruments checklist and Grading of Recommendations, Assessment, Development, and Evaluations were used to assess the quality and strength of evidence and risk of bias. RESULTS: Four thousand four hundred and seventy-eight references were extracted, and 10 articles were included for review. From 10 eligible studies, 6 questionnaires were identified, none of which adequately measure PA in clinical pediatric populations. CONCLUSION: Questionnaires to adequately measure PA in children with chronic conditions are lacking. This compromises the identification of those who do not meet PA guidelines, limiting the opportunity to identify and address factors contributing to low PA levels.


Assuntos
Exercício Físico , Nível de Saúde , Adolescente , Humanos , Criança , Pré-Escolar , Reprodutibilidade dos Testes , Inquéritos e Questionários
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA