Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
Biophys J ; 116(3): 454-468, 2019 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-30665695

RESUMO

Magnetically sensitive ion channels would allow researchers to better study how specific brain cells affect behavior in freely moving animals; however, recent reports of "magnetogenetic" ion channels based on biogenic ferritin nanoparticles have been questioned because known biophysical mechanisms cannot explain experimental observations. Here, we reproduce a weak magnetically mediated calcium response in HEK cells expressing a previously published TRPV4-ferritin fusion protein. We find that this magnetic sensitivity is attenuated when we reduce the temperature sensitivity of the channel but not when we reduce the mechanical sensitivity of the channel, suggesting that the magnetic sensitivity of this channel is thermally mediated. As a potential mechanism for this thermally mediated magnetic response, we propose that changes in the magnetic entropy of the ferritin particle can generate heat via the magnetocaloric effect and consequently gate the associated temperature-sensitive ion channel. Unlike other forms of magnetic heating, the magnetocaloric mechanism can cool magnetic particles during demagnetization. To test this prediction, we constructed a magnetogenetic channel based on the cold-sensitive TRPM8 channel. Our observation of a magnetic response in cold-gated channels is consistent with the magnetocaloric hypothesis. Together, these new data and our proposed mechanism of action provide additional resources for understanding how ion channels could be activated by low-frequency magnetic fields.


Assuntos
Entropia , Ativação do Canal Iônico , Campos Magnéticos , Canais de Cátion TRPV/metabolismo , Células HEK293 , Humanos , Proteínas Recombinantes de Fusão/metabolismo
2.
Phys Chem Chem Phys ; 20(28): 19030-19036, 2018 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-29971294

RESUMO

Bond cleavage reactions initiated by long-wavelength light are needed to extend the scope of the caged-uncaged paradigm into complex physiological settings. Axially unsymmetrical silicon phthalocyanines (SiPcs) undergo efficient release of phenol ligands in a reaction contingent on three factors - near-IR light (690 nm), hypoxia, and a thiol reductant. These studies detail efforts to define the mechanistic basis for this unique conditionally-dependent bond cleavage reaction. Spectroscopic studies provide evidence for the formation of a key phthalocyanine radical anion intermediate formed from the triplet state in a reductant-dependent manner. Computational chemistry studies indicate that phenol ligand solvolysis proceeds through a heptacoordinate silicon transition state and that this solvolytic process is favored following SiPc radical anion formation. These results provide insight regarding the central role that radical anion intermediates formed through photoinduced electron transfer with biological reductants can play in long-wavelength uncaging reactions.


Assuntos
Indóis/química , Modelos Químicos , Compostos de Organossilício/química , Raios Infravermelhos , Ligantes , Fenol/química
3.
Bioorg Med Chem ; 22(4): 1362-9, 2014 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-24440480

RESUMO

Protein citrullination is just one of more than 200 known PTMs. This modification, catalyzed by the protein arginine deiminases (PADs 1-4 and PAD6 in humans), converts the positively charged guanidinium group of an arginine residue into a neutral ureido-group. Given the strong links between dysregulated PAD activity and human disease, we initiated a program to develop PAD inhibitors as potential therapeutics for these and other diseases in which the PADs are thought to play a role. Streptonigrin which possesses both anti-tumor and anti-bacterial activity was later identified as a highly potent PAD4 inhibitor. In an effort to understand why streptonigrin is such a potent and selective PAD4 inhibitor, we explored its structure-activity relationships by examining the inhibitory effects of several analogues that mimic the A, B, C, and/or D rings of streptonigrin. We report the identification of the 7-amino-quinoline-5,8-dione core of streptonigrin as a highly potent pharmacophore that acts as a pan-PAD inhibitor.


Assuntos
Antineoplásicos/química , Inibidores Enzimáticos/química , Hidrolases/antagonistas & inibidores , Estreptonigrina/química , Animais , Antineoplásicos/metabolismo , Antineoplásicos/farmacologia , Linhagem Celular , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Inibidores Enzimáticos/metabolismo , Inibidores Enzimáticos/farmacologia , Humanos , Hidrolases/metabolismo , Cinética , Camundongos , Ligação Proteica , Isoformas de Proteínas/antagonistas & inibidores , Isoformas de Proteínas/metabolismo , Desiminases de Arginina em Proteínas , Quinolinas/química , Estreptonigrina/metabolismo , Estreptonigrina/farmacologia , Relação Estrutura-Atividade
4.
Commun Biol ; 6(1): 1278, 2023 12 18.
Artigo em Inglês | MEDLINE | ID: mdl-38110605

RESUMO

Plasticity and homeostatic mechanisms allow neural networks to maintain proper function while responding to physiological challenges. Despite previous work investigating morphological and synaptic effects of brain-derived neurotrophic factor (BDNF), the most prevalent growth factor in the central nervous system, how exposure to BDNF manifests at the network level remains unknown. Here we report that BDNF treatment affects rodent hippocampal network dynamics during development and recovery from glutamate-induced excitotoxicity in culture. Importantly, these effects are not obvious when traditional activity metrics are used, so we delve more deeply into network organization, functional analyses, and in silico simulations. We demonstrate that BDNF partially restores homeostasis by promoting recovery of weak and medium connections after injury. Imaging and computational analyses suggest these effects are caused by changes to inhibitory neurons and connections. From our in silico simulations, we find that BDNF remodels the network by indirectly strengthening weak excitatory synapses after injury. Ultimately, our findings may explain the difficulties encountered in preclinical and clinical trials with BDNF and also offer information for future trials to consider.


Assuntos
Fator Neurotrófico Derivado do Encéfalo , Sinapses , Fator Neurotrófico Derivado do Encéfalo/farmacologia , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Células Cultivadas , Sinapses/metabolismo , Neurônios/fisiologia , Ácido Glutâmico/metabolismo
5.
Front Bioeng Biotechnol ; 10: 936082, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36091446

RESUMO

The white matter tracts forming the intricate wiring of the brain are subject-specific; this heterogeneity can complicate studies of brain function and disease. Here we collapse tractography data from the Human Connectome Project (HCP) into structural connectivity (SC) matrices and identify groups of similarly wired brains from both sexes. To characterize the significance of these architectural groupings, we examined how similarly wired brains led to distinct groupings of neural activity dynamics estimated with Kuramoto oscillator models (KMs). We then lesioned our networks to simulate traumatic brain injury (TBI) and finally we tested whether these distinct architecture groups' dynamics exhibited differing responses to simulated TBI. At each of these levels we found that brain structure, simulated dynamics, and injury susceptibility were all related to brain grouping. We found four primary brain architecture groupings (two male and two female), with similar architectures appearing across both sexes. Among these groupings of brain structure, two architecture types were significantly more vulnerable than the remaining two architecture types to lesions. These groups suggest that mesoscale brain architecture types exist, and these architectural differences may contribute to differential risks to TBI and clinical outcomes across the population.

6.
Ann Biomed Eng ; 50(11): 1423-1436, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36125606

RESUMO

While individual susceptibility to traumatic brain injury (TBI) has been speculated, past work does not provide an analysis considering how physical features of an individual's brain (e.g., brain size, shape), impact direction, and brain network features can holistically contribute to the risk of suffering a TBI from an impact. This work investigated each of these features simultaneously using computational modeling and analyses of simulated functional connectivity. Unlike the past studies that assess the severity of TBI based on the quantification of brain tissue damage (e.g., principal strain), we approached the brain as a complex network in which neuronal oscillations orchestrate to produce normal brain function (estimated by functional connectivity) and, to this end, both the anatomical damage location and its topological characteristics within the brain network contribute to the severity of brain function disruption and injury. To represent the variations in the population, we analyzed a publicly available database of brain imaging data and selected five distinct network architectures, seven different brain sizes, and three uniaxial head rotational conditions to study the consequences of 74 virtual impact scenarios. Results show impact direction produces the most significant change in connections across brain areas (structural connectome) and the functional coupling of activity across these brain areas (functional connectivity). Axial rotations were more injurious than those with sagittal and coronal rotations when the head kinematics were the same for each condition. When the impact direction was held constant, brain network architecture showed a significantly different vulnerability across axial and sagittal, but not coronal rotations. As expected, brain size significantly affected the expected change in structural and functional connectivity after impact. Together, these results provided groupings of predicted vulnerability to impact-a subgroup of male brain architectures exposed to axial impacts were most vulnerable, while a subgroup of female brain architectures was the most tolerant to the sagittal impacts studied. These findings lay essential groundwork for subject-specific analyses of concussion and provide invaluable guidance for designing personalized protection equipment.


Assuntos
Concussão Encefálica , Lesões Encefálicas Traumáticas , Lesões Encefálicas , Masculino , Feminino , Humanos , Concussão Encefálica/diagnóstico por imagem , Encéfalo/diagnóstico por imagem , Simulação por Computador
7.
J Am Chem Soc ; 133(31): 12285-92, 2011 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-21736324

RESUMO

A systematic study of the inverse electron demand Diels-Alder reactions of 1,2,3-triazines is disclosed, including an examination of the impact of a C5 substituent. Such substituents were found to exhibit a remarkable impact on the cycloaddition reactivity of the 1,2,3-triazine without altering, and perhaps even enhancing, the intrinsic cycloaddition regioselectivity. The study revealed not only that the reactivity may be predictably modulated by a C5 substituent (R = CO(2)Me > Ph > H) but also that the impact is of a magnitude to convert 1,2,3-triazine (1) and its modest cycloaddition scope into a heterocyclic azadiene system with a reaction scope that portends extensive synthetic utility, expanding the range of participating dienophiles. Significantly, the studies define a now powerful additional heterocyclic azadiene, complementary to the isomeric 1,2,4-triazines and 1,3,5-triazines, capable of dependable participation in inverse electron demand Diels-Alder reactions, extending the number of complementary heterocyclic ring systems accessible with implementation of the methodology.


Assuntos
Elétrons , Triazinas/síntese química , Ciclização , Estrutura Molecular , Estereoisomerismo , Triazinas/química
8.
Netw Neurosci ; 5(1): 166-197, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33688611

RESUMO

Cytosolic PSD-95 interactor (cypin) regulates many aspects of neuronal development and function, ranging from dendritogenesis to synaptic protein localization. While it is known that removal of postsynaptic density protein-95 (PSD-95) from the postsynaptic density decreases synaptic N-methyl-D-aspartate (NMDA) receptors and that cypin overexpression protects neurons from NMDA-induced toxicity, little is known about cypin's role in AMPA receptor clustering and function. Experimental work shows that cypin overexpression decreases PSD-95 levels in synaptosomes and the PSD, decreases PSD-95 clusters/µm2, and increases mEPSC frequency. Analysis of microelectrode array (MEA) data demonstrates that cypin or cypinΔPDZ overexpression increases sensitivity to CNQX (cyanquixaline) and AMPA receptor-mediated decreases in spike waveform properties. Network-level analysis of MEA data reveals that cypinΔPDZ overexpression causes networks to be resilient to CNQX-induced changes in local efficiency. Incorporating these findings into a computational model of a neural circuit demonstrates a role for AMPA receptors in cypin-promoted changes to networks and shows that cypin increases firing rate while changing network functional organization, suggesting cypin overexpression facilitates information relay but modifies how information is encoded among brain regions. Our data show that cypin promotes changes to AMPA receptor signaling independent of PSD-95 binding, shaping neural circuits and output to regions beyond the hippocampus.

9.
Artigo em Inglês | MEDLINE | ID: mdl-32351948

RESUMO

Concussion is a significant public health problem affecting 1.6-2.4 million Americans annually. An alternative to reducing the burden of concussion is to reduce its incidence with improved protective equipment and injury mitigation systems. Finite element (FE) models of the brain response to blunt trauma are often used to estimate injury potential and can lead to improved helmet designs. However, these models have yet to incorporate how the patterns of brain connectivity disruption after impact affects the relay of information in the injured brain. Furthermore, FE brain models typically do not consider the differences in individual brain structural connectivities and their purported role in concussion risk. Here, we use graph theory techniques to integrate brain deformations predicted from FE modeling with measurements of network efficiency to identify brain regions whose connectivity characteristics may influence concussion risk. We computed maximum principal strain in 129 brain regions using head kinematics measured from 53 professional football impact reconstructions that included concussive and non-concussive cases. In parallel, using diffusion spectrum imaging data from 30 healthy subjects, we simulated structural lesioning of each of the same 129 brain regions. We simulated lesioning by removing each region one at a time along with all its connections. In turn, we computed the resultant change in global efficiency to identify regions important for network communication. We found that brain regions that deformed the most during an impact did not overlap with regions most important for network communication (Pearson's correlation, ρ = 0.07; p = 0.45). Despite this dissimilarity, we found that predicting concussion incidence was equally accurate when considering either areas of high strain or of high importance to global efficiency. Interestingly, accuracy for concussion prediction varied considerably across the 30 healthy connectomes. These results suggest that individual network structure is an important confounding variable in concussion prediction and that further investigation of its role may improve concussion prediction and lead to the development of more effective protective equipment.

10.
Nat Commun ; 7: 13378, 2016 11 17.
Artigo em Inglês | MEDLINE | ID: mdl-27853134

RESUMO

Existing strategies that use tissue-penetrant near-infrared light for the targeted treatment of cancer typically rely on the local generation of reactive oxygen species. This approach can be impeded by hypoxia, which frequently occurs in tumour microenvironments. Here we demonstrate that axially unsymmetrical silicon phthalocyanines uncage small molecules preferentially in a low-oxygen environment, while efficiently generating reactive oxygen species in normoxic conditions. Mechanistic studies of the uncaging reaction implicate a photoredox pathway involving photoinduced electron transfer to generate a key radical anion intermediate. Cellular studies demonstrate that the biological mechanism of action is O2-dependent, with reactive oxygen species-mediated phototoxicity in normoxic conditions and small molecule uncaging in hypoxia. These studies provide a near-infrared light-targeted treatment strategy with the potential to address the complex tumour landscape through two distinct mechanisms that vary in response to the local O2 environment.


Assuntos
Oxigênio/metabolismo , Sistemas de Liberação de Medicamentos , Regulação da Expressão Gênica , Células HeLa , Humanos , Modelos Químicos , Oxirredução , Fotólise , Transtornos de Fotossensibilidade , Espécies Reativas de Oxigênio
11.
ACS Chem Biol ; 10(2): 364-71, 2015 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-25457457

RESUMO

Mycobacterium tuberculosis (Mtb) maintains its intrabacterial pH (pHIB) near neutrality in the acidic environment of phagosomes within activated macrophages. A previously reported genetic screen revealed that Mtb loses this ability when the mycobacterial acid resistance protease (marP) gene is disrupted. In the present study, a high throughput screen (HTS) of compounds against the protease domain of MarP identified benzoxazinones as inhibitors of MarP. A potent benzoxazinone, BO43 (6-chloro-2-(2'-methylphenyl)-4H-1,3-benzoxazin-4-one), acylated MarP and lowered Mtb's pHIB and survival during incubation at pH 4.5. BO43 had similar effects on MarP-deficient Mtb, suggesting the existence of additional target(s). Reaction of an alkynyl-benzoxazinone, BO43T, with Mycobacterium bovis variant bacille Calmette-Guérin (BCG) followed by click chemistry with azido-biotin identified both the MarP homologue and the high temperature requirement A1 (HtrA1) homologue, an essential protein. Thus, the chemical probe identified through a target-based screen not only reacted with its intended target in the intact cells but also implicated an additional enzyme that had eluded a genetic screen biased against essential genes.


Assuntos
Homeostase , Mycobacterium tuberculosis/enzimologia , Mycobacterium tuberculosis/metabolismo , Periplasma/enzimologia , Serina Proteases/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Benzoxazinas/química , Benzoxazinas/farmacologia , Regulação Bacteriana da Expressão Gênica/fisiologia , Regulação Enzimológica da Expressão Gênica/fisiologia , Concentração de Íons de Hidrogênio , Sondas Moleculares/química , Sondas Moleculares/metabolismo , Estrutura Molecular , Mycobacterium tuberculosis/citologia , Mycobacterium tuberculosis/genética , Serina Proteases/genética , Inibidores de Serina Proteinase/química , Inibidores de Serina Proteinase/farmacologia
12.
Org Lett ; 16(19): 5084-7, 2014 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-25222918

RESUMO

The scope of the [4 + 2] cycloaddition reactions of substituted 1,2,3-triazines, bearing noncomplementary substitution with electron-withdrawing groups at C4 and/or C6, is described. The studies define key electronic and steric effects of substituents impacting the reactivity, mode (C4/N1 vs C5/N2), and regioselectivity of the cycloaddition reactions of 1,2,3-triazines with amidines, enamines, and ynamines, providing access to highly functionalized heterocycles.


Assuntos
Triazinas/química , Reação de Cicloadição , Estrutura Molecular , Estereoisomerismo
13.
Org Lett ; 13(9): 2492-4, 2011 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-21488676

RESUMO

An examination of the scope of the inverse electron demand Diels-Alder reactions of the parent unsubstituted 1,2,3-triazine is described including the first report of its unique capabilities for participating in previously unexplored [4 + 2] cycloaddition reactions with heterodienophiles.


Assuntos
Elétrons , Triazinas/química , Ciclização , Estrutura Molecular
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA