Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
1.
Annu Rev Immunol ; 42(1): 427-53, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38360547

RESUMO

The role of the autoimmune regulator (Aire) in central immune tolerance and thymic self-representation was first described more than 20 years ago, but fascinating new insights into its biology continue to emerge, particularly in the era of advanced single-cell genomics. We briefly describe the role of human genetics in the discovery of Aire, as well as insights into its function gained from genotype-phenotype correlations and the spectrum of Aire-associated autoimmunity-including insights from patients with Aire mutations with broad and diverse implications for human health. We then highlight emerging trends in Aire biology, focusing on three topic areas. First, we discuss medullary thymic epithelial diversity and the role of Aire in thymic epithelial development. Second, we highlight recent developments regarding the molecular mechanisms of Aire and its binding partners. Finally, we describe the rapidly evolving biology of the identity and function of extrathymic Aire-expressing cells (eTACs), and a novel eTAC subset called Janus cells, as well as their potential roles in immune homeostasis.


Assuntos
Proteína AIRE , Autoimunidade , Fatores de Transcrição , Humanos , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética , Animais , Timo/imunologia , Timo/metabolismo , Mutação , Tolerância Imunológica , Células Epiteliais/metabolismo , Células Epiteliais/imunologia , Doenças Autoimunes/imunologia , Doenças Autoimunes/genética , Doenças Autoimunes/metabolismo
2.
Nature ; 632(8025): 622-629, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39112696

RESUMO

Multisystem inflammatory syndrome in children (MIS-C) is a severe, post-infectious sequela of SARS-CoV-2 infection1,2, yet the pathophysiological mechanism connecting the infection to the broad inflammatory syndrome remains unknown. Here we leveraged a large set of samples from patients with MIS-C to identify a distinct set of host proteins targeted by patient autoantibodies including a particular autoreactive epitope within SNX8, a protein involved in regulating an antiviral pathway associated with MIS-C pathogenesis. In parallel, we also probed antibody responses from patients with MIS-C to the complete SARS-CoV-2 proteome and found enriched reactivity against a distinct domain of the SARS-CoV-2 nucleocapsid protein. The immunogenic regions of the viral nucleocapsid and host SNX8 proteins bear remarkable sequence similarity. Consequently, we found that many children with anti-SNX8 autoantibodies also have cross-reactive T cells engaging both the SNX8 and the SARS-CoV-2 nucleocapsid protein epitopes. Together, these findings suggest that patients with MIS-C develop a characteristic immune response to the SARS-CoV-2 nucleocapsid protein that is associated with cross-reactivity to the self-protein SNX8, demonstrating a mechanistic link between the infection and the inflammatory syndrome, with implications for better understanding a range of post-infectious autoinflammatory diseases.


Assuntos
Anticorpos Antivirais , Autoanticorpos , COVID-19 , Reações Cruzadas , Epitopos , Mimetismo Molecular , SARS-CoV-2 , Síndrome de Resposta Inflamatória Sistêmica , Criança , Humanos , Anticorpos Antivirais/imunologia , Autoanticorpos/imunologia , Proteínas do Nucleocapsídeo de Coronavírus/química , Proteínas do Nucleocapsídeo de Coronavírus/imunologia , COVID-19/imunologia , COVID-19/virologia , COVID-19/complicações , Reações Cruzadas/imunologia , Epitopos/imunologia , Epitopos/química , Mimetismo Molecular/imunologia , Fosfoproteínas/química , Fosfoproteínas/imunologia , SARS-CoV-2/química , SARS-CoV-2/imunologia , SARS-CoV-2/metabolismo , SARS-CoV-2/patogenicidade , Nexinas de Classificação/química , Nexinas de Classificação/imunologia , Síndrome de Resposta Inflamatória Sistêmica/imunologia , Síndrome de Resposta Inflamatória Sistêmica/patologia , Síndrome de Resposta Inflamatória Sistêmica/virologia , Linfócitos T/imunologia
3.
N Engl J Med ; 390(20): 1873-1884, 2024 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-38810185

RESUMO

BACKGROUND: Autoimmune polyendocrine syndrome type 1 (APS-1) is a life-threatening, autosomal recessive syndrome caused by autoimmune regulator (AIRE) deficiency. In APS-1, self-reactive T cells escape thymic negative selection, infiltrate organs, and drive autoimmune injury. The effector mechanisms governing T-cell-mediated damage in APS-1 remain poorly understood. METHODS: We examined whether APS-1 could be classified as a disease mediated by interferon-γ. We first assessed patients with APS-1 who were participating in a prospective natural history study and evaluated mRNA and protein expression in blood and tissues. We then examined the pathogenic role of interferon-γ using Aire-/-Ifng-/- mice and Aire-/- mice treated with the Janus kinase (JAK) inhibitor ruxolitinib. On the basis of our findings, we used ruxolitinib to treat five patients with APS-1 and assessed clinical, immunologic, histologic, transcriptional, and autoantibody responses. RESULTS: Patients with APS-1 had enhanced interferon-γ responses in blood and in all examined autoimmunity-affected tissues. Aire-/- mice had selectively increased interferon-γ production by T cells and enhanced interferon-γ, phosphorylated signal transducer and activator of transcription 1 (pSTAT1), and CXCL9 signals in multiple organs. Ifng ablation or ruxolitinib-induced JAK-STAT blockade in Aire-/- mice normalized interferon-γ responses and averted T-cell infiltration and damage in organs. Ruxolitinib treatment of five patients with APS-1 led to decreased levels of T-cell-derived interferon-γ, normalized interferon-γ and CXCL9 levels, and remission of alopecia, oral candidiasis, nail dystrophy, gastritis, enteritis, arthritis, Sjögren's-like syndrome, urticaria, and thyroiditis. No serious adverse effects from ruxolitinib were identified in these patients. CONCLUSIONS: Our findings indicate that APS-1, which is caused by AIRE deficiency, is characterized by excessive, multiorgan interferon-γ-mediated responses. JAK inhibition with ruxolitinib in five patients showed promising results. (Funded by the National Institute of Allergy and Infectious Diseases and others.).


Assuntos
Proteína AIRE , Interferon gama , Inibidores de Janus Quinases , Poliendocrinopatias Autoimunes , Adulto , Animais , Feminino , Humanos , Masculino , Camundongos , Proteína AIRE/deficiência , Proteína AIRE/genética , Proteína AIRE/imunologia , Autoanticorpos/sangue , Autoanticorpos/imunologia , Quimiocina CXCL9/genética , Interferon gama/genética , Interferon gama/imunologia , Inibidores de Janus Quinases/uso terapêutico , Camundongos Knockout , Nitrilas/uso terapêutico , Poliendocrinopatias Autoimunes/genética , Poliendocrinopatias Autoimunes/tratamento farmacológico , Poliendocrinopatias Autoimunes/imunologia , Pirazóis/uso terapêutico , Pirazóis/farmacologia , Pirimidinas/uso terapêutico , Linfócitos T/imunologia , Fatores de Transcrição/genética , Fatores de Transcrição/imunologia , Projetos Piloto , Modelos Animais de Doenças , Criança , Adolescente , Pessoa de Meia-Idade
4.
Nat Methods ; 21(5): 846-856, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38658646

RESUMO

CD4+ T cells recognize peptide antigens presented on class II major histocompatibility complex (MHC-II) molecules to carry out their function. The remarkable diversity of T cell receptor sequences and lack of antigen discovery approaches for MHC-II make profiling the specificities of CD4+ T cells challenging. We have expanded our platform of signaling and antigen-presenting bifunctional receptors to encode MHC-II molecules presenting covalently linked peptides (SABR-IIs) for CD4+ T cell antigen discovery. SABR-IIs can present epitopes to CD4+ T cells and induce signaling upon their recognition, allowing a readable output. Furthermore, the SABR-II design is modular in signaling and deployment to T cells and B cells. Here, we demonstrate that SABR-IIs libraries presenting endogenous and non-contiguous epitopes can be used for antigen discovery in the context of type 1 diabetes. SABR-II libraries provide a rapid, flexible, scalable and versatile approach for de novo identification of CD4+ T cell ligands from single-cell RNA sequencing data using experimental and computational approaches.


Assuntos
Linfócitos T CD4-Positivos , Epitopos de Linfócito T , Antígenos de Histocompatibilidade Classe II , Linfócitos T CD4-Positivos/imunologia , Epitopos de Linfócito T/imunologia , Animais , Antígenos de Histocompatibilidade Classe II/imunologia , Antígenos de Histocompatibilidade Classe II/química , Camundongos , Humanos , Diabetes Mellitus Tipo 1/imunologia , Peptídeos/imunologia , Peptídeos/química , Apresentação de Antígeno/imunologia , Receptores de Antígenos de Linfócitos T/imunologia , Camundongos Endogâmicos NOD , Análise de Célula Única/métodos
5.
Proc Natl Acad Sci U S A ; 121(20): e2320268121, 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38709934

RESUMO

Insulin is a central autoantigen in the pathogenesis of T1D, and thymic epithelial cell expression of insulin under the control of the Autoimmune Regulator (Aire) is thought to be a key component of maintaining tolerance to insulin. In spite of this general working model, direct detection of this thymic selection on insulin-specific T cells has been somewhat elusive. Here, we used a combination of highly sensitive T cell receptor transgenic models for detecting thymic selection and sorting and sequencing of Insulin-specific CD4+ T cells from Aire-deficient mice as a strategy to further define their selection. This analysis revealed a number of unique t cell receptor (TCR) clones in Aire-deficient hosts with high affinity for insulin/major histocompatibility complex (MHC) ligands. We then modeled the thymic selection of one of these clones in Aire-deficient versus wild-type hosts and found that this model clone could escape thymic negative selection in the absence of thymic Aire. Together, these results suggest that thymic expression of insulin plays a key role in trimming and removing high-affinity insulin-specific T cells from the repertoire to help promote tolerance.


Assuntos
Proteína AIRE , Insulina , Receptores de Antígenos de Linfócitos T , Timo , Animais , Camundongos , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD4-Positivos/metabolismo , Células Clonais , Tolerância Imunológica , Insulina/metabolismo , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Receptores de Antígenos de Linfócitos T/metabolismo , Receptores de Antígenos de Linfócitos T/imunologia , Timo/imunologia , Timo/metabolismo , Timo/citologia , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética
6.
Proc Natl Acad Sci U S A ; 121(5): e2311487121, 2024 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-38261611

RESUMO

Roughly one-half of mice with partial defects in two immune tolerance pathways (AireGW/+Lyn-/- mice) spontaneously develop severe damage to their retinas due to T cell reactivity to Aire-regulated interphotoreceptor retinoid-binding protein (IRBP). Single-cell T cell receptor (TCR) sequencing of CD4+ T cells specific for a predominate epitope of IRBP showed a remarkable diversity of autoantigen-specific TCRs with greater clonal expansions in mice with disease. TCR transgenic mice made with an expanded IRBP-specific TCR (P2.U2) of intermediate affinity exhibited strong but incomplete negative selection of thymocytes. This negative selection was absent in IRBP-/- mice and greatly defective in AireGW/+ mice. Most P2.U2+/- mice and all P2.U.2+/-AireGW/+ mice rapidly developed inflammation of the retina and adjacent uvea (uveitis). Aire-dependent IRBP expression in the thymus also promoted Treg differentiation, but the niche for this fate determination was small, suggesting differences in antigen presentation leading to negative selection vs. thymic Treg differentiation and a stronger role for negative selection in preventing autoimmune disease in the retina.


Assuntos
Apresentação de Antígeno , Receptores de Antígenos de Linfócitos T , Animais , Camundongos , Autoantígenos , Modelos Animais de Doenças , Camundongos Endogâmicos , Camundongos Transgênicos
7.
Clin Exp Immunol ; 217(2): 119-132, 2024 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-38693758

RESUMO

Peripheral blood mononuclear cell (PBMC) immunophenotyping is crucial in tracking activation, disease state, and response to therapy in human subjects. Many studies require the shipping of blood from clinical sites to a laboratory for processing to PBMC, which can lead to delays that impact sample quality. We used an extensive cytometry by time-of-flight (CyTOF) immunophenotyping panel to analyze the impacts of delays to processing and distinct storage conditions on cell composition and quality of PBMC from seven adults across a range of ages, including two with rheumatoid arthritis. Two or more days of delay to processing resulted in extensive red blood cell contamination and increased variability of cell counts. While total memory and naïve B- and T-cell populations were maintained, 4-day delays reduced the frequencies of monocytes. Variation across all immune subsets increased with delays of up to 7 days in processing. Unbiased clustering analysis to define more granular subsets confirmed changes in PBMC composition, including decreases of classical and non-classical monocytes, basophils, plasmacytoid dendritic cells, and follicular helper T cells, with each subset impacted at a distinct time of delay. Expression of activation markers and chemokine receptors changed by Day 2, with differential impacts across subsets and markers. Our data support existing recommendations to process PBMC within 36 h of collection but provide guidance on appropriate immunophenotyping experiments with longer delays.


Assuntos
Imunofenotipagem , Leucócitos Mononucleares , Humanos , Imunofenotipagem/métodos , Adulto , Masculino , Feminino , Leucócitos Mononucleares/imunologia , Pessoa de Meia-Idade , Citometria de Fluxo/métodos , Fatores de Tempo , Monócitos/imunologia , Idoso , Preservação de Sangue/métodos , Linfócitos B/imunologia
8.
Cancers (Basel) ; 16(9)2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38730614

RESUMO

Immune checkpoint inhibitor (CPI)-induced diabetes mellitus (CPI-DM) is a rare immune-related adverse event (irAE). Patients and providers fear that continuing CPIs puts patients at risk for additional irAEs and thus may discontinue therapy. Currently, there are little data to inform this decision. Therefore, this study aims to elucidate whether discontinuing CPIs after diagnosis of CPI-DM impacts the development of future irAEs and cancer outcomes such as progression and death. Patients who developed CPI-DM during cancer treatment at UCSF from 1 July 2015 to 5 July 2023 were analyzed for cancer outcomes and irAE development. Fisher's exact tests, Student t-tests, Kaplan-Meier methods, and Cox regression were used as appropriate. Of the 43 patients with CPI-DM, 20 (47%) resumed CPIs within 90 days of the irAE, 4 (9%) patients restarted after 90 days, and 19 (44%) patients never restarted. Subsequent irAEs were diagnosed in 9 of 24 (38%) who resumed CPIs and 3 of 19 (16%) who discontinued CPIs (p = 0.17). There was no significant difference in death (p = 0.74) or cancer progression (p = 0.55) between these two groups. While our single-institution study did not show worse cancer outcomes after discontinuing CPIs, many variables can impact outcomes, which our study was not adequately powered to evaluate. A nuanced approach is needed to decide whether to continue CPI treatment after a severe irAE like CPI-DM.

9.
Artigo em Inglês | MEDLINE | ID: mdl-39038853

RESUMO

Immunomodulatory agents targeting immune checkpoints are now the state-of-the-art for the treatment of many cancers, but at the same time have led to autoimmune side effects, including autoimmune diabetes: immune checkpoint inhibitor-induced diabetes (CPI-DM). Emerging research shows the importance of preexisting autoimmune disease risk that has been identified through genetics, and autoantibodies. Key associated clinical findings also include increased levels of lipase before diagnosis suggesting that the inflammatory process in the pancreas extends beyond the islets of Langerhans. There is selectivity for the blockade of programmed cell death protein 1 (PD-1)/programmed death-ligand 1 (PD-L1) for this adverse event, consistent with the role of this checkpoint in maintaining tolerance to autoimmune diabetes.

10.
ACR Open Rheumatol ; 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38952015

RESUMO

OBJECTIVE: Interstitial lung diseases (ILDs) are a heterogeneous group of disorders that can develop in patients with connective tissue diseases. Establishing autoimmunity in ILD impacts prognosis and treatment. Patients with ILD are screened for autoimmunity by measuring antinuclear autoantibodies, rheumatoid factors, and other nonspecific tests. However, this approach may miss autoimmunity that manifests as autoantibodies to tissue antigens not previously defined in ILD. METHODS: We use Phage Immunoprecipitation-Sequencing (PhIP-Seq) to conduct an autoantibody discovery screen of patients with ILD and controls. We screened for novel autoantigen candidates using PhIP-Seq. We next developed a radio-labeled binding assay and validated the leading candidate in 398 patients with ILD recruited from two academic medical centers and 138 blood bank individuals that formed our reference cohort. RESULTS: PhIP-Seq identified 17 novel autoreactive targets, and machine learning classifiers derived from these targets discriminated ILD serum from controls. Among the 17 candidates, we validated CDHR5 and found CDHR5 autoantibodies in patients with rheumatologic disorders and importantly, patients not previously diagnosed with autoimmunity. Using survival and transplant free-survival data available from one of the two centers, patients with CDHR5 autoantibodies showed worse survival compared with other patients with connective tissue disease ILD. CONCLUSION: We used PhIP-Seq to define a novel CDHR5 autoantibody in a subset of select patients with ILD. Our data complement a recent study showing polymorphisms in the CDHR5-IRF7 gene locus strongly associated with titer of anticentromere antibodies in systemic sclerosis, creating a growing body of evidence suggesting a link between CDHR5 and autoimmunity.

11.
J Clin Invest ; 134(8)2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38470480

RESUMO

BACKGROUNDWeakly virulent environmental mycobacteria (EM) can cause severe disease in HLA-DRB1*15:02 or 16:02 adults harboring neutralizing anti-IFN-γ autoantibodies (nAIGAs). The overall prevalence of nAIGAs in the general population is unknown, as are the penetrance of nAIGAs in HLA-DRB1*15:02 or 16:02 individuals and the proportion of patients with unexplained, adult-onset EM infections carrying nAIGAs.METHODSThis study analyzed the detection and neutralization of anti-IFN-γ autoantibodies (auto-Abs) from 8,430 healthy individuals of the general population, 257 HLA-DRB1*15:02 or 16:02 carriers, 1,063 patients with autoimmune disease, and 497 patients with unexplained severe disease due to EM.RESULTSWe found that anti-IFN-γ auto-Abs detected in 4,148 of 8,430 healthy individuals (49.2%) from the general population of an unknown HLA-DRB1 genotype were not neutralizing. Moreover, we did not find nAIGAs in 257 individuals carrying HLA-DRB1* 15:02 or 16:02. Additionally, nAIGAs were absent in 1,063 patients with an autoimmune disease. Finally, 7 of 497 patients (1.4%) with unexplained severe disease due to EM harbored nAIGAs.CONCLUSIONThese findings suggest that nAIGAs are isolated and that their penetrance in HLA-DRB1*15:02 or 16:02 individuals is low, implying that they may be triggered by rare germline or somatic variants. In contrast, the risk of mycobacterial disease in patients with nAIGAs is high, confirming that these nAIGAs are the cause of EM disease.FUNDINGThe Laboratory of Human Genetics of Infectious Diseases is supported by the Howard Hughes Medical Institute, the Rockefeller University, the St. Giles Foundation, the National Institutes of Health (NIH) (R01AI095983 and U19AIN1625568), the National Center for Advancing Translational Sciences (NCATS), the NIH Clinical and Translational Science Award (CTSA) program (UL1 TR001866), the French National Research Agency (ANR) under the "Investments for the Future" program (ANR-10-IAHU-01), the Integrative Biology of Emerging Infectious Diseases Laboratory of Excellence (ANR-10-LABX-62-IBEID), ANR-GENMSMD (ANR-16-CE17-0005-01), ANR-MAFMACRO (ANR-22-CE92-0008), ANRSECTZ170784, the French Foundation for Medical Research (FRM) (EQU201903007798), the ANRS-COV05, ANR GENVIR (ANR-20-CE93-003), and ANR AI2D (ANR-22-CE15-0046) projects, the ANR-RHU program (ANR-21-RHUS-08-COVIFERON), the European Union's Horizon 2020 research and innovation program under grant agreement no. 824110 (EASI-genomics), the Square Foundation, Grandir - Fonds de solidarité pour l'enfance, the Fondation du Souffle, the SCOR Corporate Foundation for Science, the Battersea & Bowery Advisory Group, William E. Ford, General Atlantic's Chairman and Chief Executive Officer, Gabriel Caillaux, General Atlantic's Co-President, Managing Director, and Head of business in EMEA, and the General Atlantic Foundation, Institut National de la Santé et de la Recherche Médicale (INSERM) and of Paris Cité University. JR was supported by the INSERM PhD program for doctors of pharmacy (poste d'accueil INSERM). JR and TLV were supported by the Bettencourt-Schueller Foundation and the MD-PhD program of the Imagine Institute. MO was supported by the David Rockefeller Graduate Program, the Funai Foundation for Information Technology (FFIT), the Honjo International Scholarship Foundation (HISF), and the New York Hideyo Noguchi Memorial Society (HNMS).


Assuntos
Autoanticorpos , Doenças Autoimunes , Adulto , Humanos , Predisposição Genética para Doença , Genótipo , Cadeias HLA-DRB1/genética , Infecções por Mycobacterium não Tuberculosas
12.
J Clin Invest ; 134(13)2024 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-38753445

RESUMO

Given the global surge in autoimmune diseases, it is critical to evaluate emerging therapeutic interventions. Despite numerous new targeted immunomodulatory therapies, comprehensive approaches to apply and evaluate the effects of these treatments longitudinally are lacking. Here, we leveraged advances in programmable-phage immunoprecipitation methodology to explore the modulation, or lack thereof, of autoantibody profiles, proteome-wide, in both health and disease. Using a custom set of over 730,000 human-derived peptides, we demonstrated that each individual, regardless of disease state, possesses a distinct and complex constellation of autoreactive antibodies. For each individual, the set of resulting autoreactivites constituted a unique immunological fingerprint, or "autoreactome," that was remarkably stable over years. Using the autoreactome as a primary output, we evaluated the relative effectiveness of various immunomodulatory therapies in altering autoantibody repertoires. We found that therapies targeting B cell maturation antigen (BCMA) profoundly altered an individual's autoreactome, while anti-CD19 and anti-CD20 therapies had minimal effects. These data both confirm that the autoreactome comprises autoantibodies secreted by plasma cells and strongly suggest that BCMA or other plasma cell-targeting therapies may be highly effective in treating currently refractory autoantibody-mediated diseases.


Assuntos
Autoanticorpos , Autoimunidade , Proteoma , Humanos , Autoanticorpos/imunologia , Feminino , Doenças Autoimunes/imunologia , Doenças Autoimunes/terapia , Masculino , Imunoterapia Adotiva/métodos , Antígeno de Maturação de Linfócitos B/imunologia , Antígeno de Maturação de Linfócitos B/metabolismo , Adulto , Receptores de Antígenos Quiméricos/imunologia , Receptores de Antígenos Quiméricos/metabolismo , Antígenos CD19/imunologia , Pessoa de Meia-Idade
13.
J Exp Med ; 221(6)2024 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-38634869

RESUMO

We previously reported two siblings with inherited PD-1 deficiency who died from autoimmune pneumonitis at 3 and 11 years of age after developing other autoimmune manifestations, including type 1 diabetes (T1D). We report here two siblings, aged 10 and 11 years, with neonatal-onset T1D (diagnosed at the ages of 1 day and 7 wk), who are homozygous for a splice-site variant of CD274 (encoding PD-L1). This variant results in the exclusive expression of an alternative, loss-of-function PD-L1 protein isoform in overexpression experiments and in the patients' primary leukocytes. Surprisingly, cytometric immunophenotyping and single-cell RNA sequencing analysis on blood leukocytes showed largely normal development and transcriptional profiles across lymphoid and myeloid subsets in the PD-L1-deficient siblings, contrasting with the extensive dysregulation of both lymphoid and myeloid leukocyte compartments in PD-1 deficiency. Our findings suggest that PD-1 and PD-L1 are essential for preventing early-onset T1D but that, unlike PD-1 deficiency, PD-L1 deficiency does not lead to fatal autoimmunity with extensive leukocytic dysregulation.


Assuntos
Antígeno B7-H1 , Diabetes Mellitus Tipo 1 , Criança , Pré-Escolar , Humanos , Recém-Nascido , Autoimunidade , Antígeno B7-H1/deficiência , Antígeno B7-H1/genética , Antígeno B7-H1/imunologia , Diabetes Mellitus Tipo 1/genética , Diabetes Mellitus Tipo 1/imunologia , Homozigoto , Receptor de Morte Celular Programada 1/deficiência , Receptor de Morte Celular Programada 1/genética , Receptor de Morte Celular Programada 1/imunologia
14.
Sci Transl Med ; 16(753): eadl3758, 2024 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-38924428

RESUMO

Vitamin B12 is critical for hematopoiesis and myelination. Deficiency can cause neurologic deficits including loss of coordination and cognitive decline. However, diagnosis relies on measurement of vitamin B12 in the blood, which may not accurately reflect the concentration in the brain. Using programmable phage display, we identified an autoantibody targeting the transcobalamin receptor (CD320) in a patient with progressive tremor, ataxia, and scanning speech. Anti-CD320 impaired cellular uptake of cobalamin (B12) in vitro by depleting its target from the cell surface. Despite a normal serum concentration, B12 was nearly undetectable in her cerebrospinal fluid (CSF). Immunosuppressive treatment and high-dose systemic B12 supplementation were associated with increased B12 in the CSF and clinical improvement. Optofluidic screening enabled isolation of a patient-derived monoclonal antibody that impaired B12 transport across an in vitro model of the blood-brain barrier (BBB). Autoantibodies targeting the same epitope of CD320 were identified in seven other patients with neurologic deficits of unknown etiology, 6% of healthy controls, and 21.4% of a cohort of patients with neuropsychiatric lupus. In 132 paired serum and CSF samples, detection of anti-CD320 in the blood predicted B12 deficiency in the brain. However, these individuals did not display any hematologic signs of B12 deficiency despite systemic CD320 impairment. Using a genome-wide CRISPR screen, we found that the low-density lipoprotein receptor serves as an alternative B12 uptake pathway in hematopoietic cells. These findings dissect the tissue specificity of B12 transport and elucidate an autoimmune neurologic condition that may be amenable to immunomodulatory treatment and nutritional supplementation.


Assuntos
Autoanticorpos , Deficiência de Vitamina B 12 , Vitamina B 12 , Humanos , Deficiência de Vitamina B 12/imunologia , Vitamina B 12/sangue , Autoanticorpos/sangue , Autoanticorpos/imunologia , Feminino , Receptores de Superfície Celular/metabolismo , Antígenos CD/metabolismo , Pessoa de Meia-Idade , Doenças Autoimunes/imunologia , Doenças Autoimunes/sangue , Barreira Hematoencefálica/metabolismo , Masculino
15.
Front Immunol ; 14: 1277365, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38420512

RESUMO

Thymic epithelial cells are indispensable for T cell maturation and selection and the induction of central immune tolerance. The self-peptide repertoire expressed by medullary thymic epithelial cells is in part regulated by the transcriptional regulator Aire (Autoimmune regulator) and the transcription factor Fezf2. Due to the high complexity of mTEC maturation stages (i.e., post-Aire, Krt10+ mTECs, and Dclk1+ Tuft mTECs) and the heterogeneity in their gene expression profiles (i.e., mosaic expression patterns), it has been challenging to identify the additional factors complementing the transcriptional regulation. We aimed to identify the transcriptional regulators involved in the regulation of mTEC development and self-peptide expression in an unbiased and genome-wide manner. We used ATAC footprinting analysis as an indirect approach to identify transcription factors involved in the gene expression regulation in mTECs, which we validated by ChIP sequencing. This study identifies Fezf2 as a regulator of the recently described thymic Tuft cells (i.e., Tuft mTECs). Furthermore, we identify that transcriptional regulators of the ELF, ESE, ERF, and PEA3 subfamily of the ETS transcription factor family and members of the Krüppel-like family of transcription factors play a role in the transcriptional regulation of genes involved in late mTEC development and promiscuous gene expression.


Assuntos
Fatores de Transcrição , Células em Tufo , Fatores de Transcrição/metabolismo , Regulação da Expressão Gênica , Células Epiteliais/metabolismo , Peptídeos/metabolismo
16.
medRxiv ; 2023 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-38196603

RESUMO

The prevalence and burden of autoimmune and autoantibody mediated disease is increasing worldwide, yet most disease etiologies remain unclear. Despite numerous new targeted immunomodulatory therapies, comprehensive approaches to apply and evaluate the effects of these treatments longitudinally are lacking. Here, we leverage advances in programmable-phage immunoprecipitation (PhIP-Seq) methodology to explore the modulation, or lack thereof, of proteome-wide autoantibody profiles in both health and disease. We demonstrate that each individual, regardless of disease state, possesses a distinct set of autoreactivities constituting a unique immunological fingerprint, or "autoreactome", that is remarkably stable over years. In addition to uncovering important new biology, the autoreactome can be used to better evaluate the relative effectiveness of various therapies in altering autoantibody repertoires. We find that therapies targeting B-Cell Maturation Antigen (BCMA) profoundly alter an individual's autoreactome, while anti-CD19 and CD-20 therapies have minimal effects, strongly suggesting a rationale for BCMA or other plasma cell targeted therapies in autoantibody mediated diseases.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA