Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Acta Neuropathol ; 147(1): 94, 2024 06 04.
Artigo em Inglês | MEDLINE | ID: mdl-38833073

RESUMO

A recent large genome-wide association study has identified EGFR (encoding the epidermal growth factor EGFR) as a new genetic risk factor for late-onset AD. SHIP2, encoded by INPPL1, is taking part in the signalling and interactome of several growth factor receptors, such as the EGFR. While INPPL1 has been identified as one of the most significant genes whose RNA expression correlates with cognitive decline, the potential alteration of SHIP2 expression and localization during the progression of AD remains largely unknown. Here we report that gene expression of both EGFR and INPPL1 was upregulated in AD brains. SHIP2 immunoreactivity was predominantly detected in plaque-associated astrocytes and dystrophic neurites and its increase was correlated with amyloid load in the brain of human AD and of 5xFAD transgenic mouse model of AD. While mRNA of INPPL1 was increased in AD, SHIP2 protein undergoes a significant solubility change being depleted from the soluble fraction of AD brain homogenates and co-enriched with EGFR in the insoluble fraction. Using FRET-based flow cytometry biosensor assay for tau-tau interaction, overexpression of SHIP2 significantly increased the FRET signal while siRNA-mediated downexpression of SHIP2 significantly decreased FRET signal. Genetic association analyses suggest that some variants in INPPL1 locus are associated with the level of CSF pTau. Our data support the hypothesis that SHIP2 is an intermediate key player of EGFR and AD pathology linking amyloid and tau pathologies in human AD.


Assuntos
Doença de Alzheimer , Encéfalo , Progressão da Doença , Receptores ErbB , Fosfatidilinositol-3,4,5-Trifosfato 5-Fosfatases , Idoso , Idoso de 80 Anos ou mais , Animais , Feminino , Humanos , Masculino , Camundongos , Doença de Alzheimer/patologia , Doença de Alzheimer/genética , Doença de Alzheimer/metabolismo , Encéfalo/patologia , Encéfalo/metabolismo , Receptores ErbB/genética , Receptores ErbB/metabolismo , Expressão Gênica , Camundongos Transgênicos , Fosfatidilinositol-3,4,5-Trifosfato 5-Fosfatases/genética , Fosfatidilinositol-3,4,5-Trifosfato 5-Fosfatases/metabolismo , Solubilidade , Proteínas tau/metabolismo , Proteínas tau/genética
2.
Acta Neuropathol ; 139(4): 773-789, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31925534

RESUMO

Genome-wide association studies (GWAS) have identified PICALM as one of the most significant susceptibility loci for late-onset Alzheimer's disease (AD) after APOE and BIN1. PICALM is a clathrin-adaptor protein and plays critical roles in clathrin-mediated endocytosis and in autophagy. PICALM modulates brain amyloid ß (Aß) pathology and tau accumulation. We have previously reported that soluble PICALM protein level is reduced in correlation with abnormalities of autophagy markers in the affected brain areas of neurodegenerative diseases including AD, sporadic tauopathies and familial cases of frontotemporal lobar degeneration with tau-immunoreactive inclusions (FTLD-tau) with mutations in the microtubule-associated protein tau (MAPT) gene. It remains unclarified whether in vivo PICALM reduction could either trigger or influence tau pathology progression in the brain. In this study, we confirmed a significant reduction of soluble PICALM protein and autophagy deficits in the post-mortem human brains of FTLD-tau-MAPT (P301L, S364S and L266V). We generated a novel transgenic mouse line named Tg30xPicalm+/- by crossing Tg30 tau transgenic mice with Picalm-haploinsufficient mice to test whether Picalm reduction may modulate tau pathology. While Picalm haploinsufficiency did not lead to any motor phenotype or detectable tau pathology in mouse brains, Tg30xPicalm+/- mice developed markedly more severe motor deficits than Tg30 by the age of 9 months. Tg30xPicalm+/- had significantly higher pathological tau levels in the brain, an increased density of neurofibrillary tangles compared to Tg30 mice and increased abnormalities of autophagy markers. Our results demonstrate that Picalm haploinsufficiency in transgenic Tg30 mice significantly aggravated tau pathologies and tau-mediated neurodegeneration, supporting a role for changes in Picalm expression as a risk/sensitizing factor for development of tau pathology and as a mechanism underlying the AD risk associated to PICALM.


Assuntos
Proteínas Monoméricas de Montagem de Clatrina/genética , Tauopatias/genética , Tauopatias/patologia , Animais , Encéfalo/patologia , Modelos Animais de Doenças , Feminino , Demência Frontotemporal/metabolismo , Haploinsuficiência , Humanos , Masculino , Camundongos , Camundongos Transgênicos , Pessoa de Meia-Idade , Proteínas Monoméricas de Montagem de Clatrina/metabolismo , Tauopatias/metabolismo , Proteínas tau/genética
3.
Neurobiol Dis ; 127: 131-141, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-30818066

RESUMO

Impaired adult hippocampal neurogenesis has been reported as a feature of Alzheimer's disease and other tauopathies and might contribute to defects in learning and memory in these diseases. To assess the interference of tau pathology, a common key-lesion in these diseases, with adult hippocampal neurogenesis we analyzed adult neurogenesis in the hippocampal dentate gyrus in wild-type mice, Tg30 mice expressing a FTDP-17 mutant tau and the same Tg30 mice deficient for mouse tau (Tg30/tauKO). The volume of the granular layer, the number of granule cells and of neuronal precursors expressing the immature markers DCX or 3R-tau were analyzed in the dentate gyrus (DG) using unbiased stereological methods. The co-localization of neurogenic markers with the human mutant tau was also analyzed. We observed a significant reduction of the volume of the granular layer and of granule cells number in mutant tau Tg30 mice, but not in Tg30/tauKO mice. The number of neuronal precursors expressing the immature markers DCX or 3R-tau (the latter only expressed in wild-type and Tg30 mice) and the number of cells expressing the proliferation marker Ki-67 in the neurogenic subgranular zone of the DG was reduced in Tg30 but not in Tg30/tauKO mice. The density of phosphotau positive cells in the DG and the level of soluble human phosphotau was lower in Tg30/tauKO compared to Tg30 mice. The human mutant tau was expressed in mature granule cells in Tg30 and Tg30/tauKO mice but was not expressed in Sox2 positive neural stem cells and in DCX positive neuronal precursors/immature newborn neurons. These results demonstrate an impairment of adult hippocampal neurogenesis in a FTDP-17 mutant tau mice resulting from a decrease of proliferation affecting the pool of neuronal precursors. The mutant tau was not expressed in precursors cells in these mutant tau mice, suggesting that this neurogenic defect is cell non-autonomous. Interestingly, expression of endogenous wild-type tau in mature granule cells was necessary to observe this toxic effect of human mutant tau, since this impaired adult neurogenesis was rescued by lowering tau expression in Tg30/tauKO mice. These observations suggest that development of tau pathology in granule cells of the dentate gyrus is responsible for reduction of adult hippocampal neurogenesis also in human tauopathies by impairing proliferation of neuronal precursors, and that reduction of tau expression might be an approach to rescue this impairment.


Assuntos
Hipocampo/metabolismo , Neurogênese/genética , Neurônios/metabolismo , Tauopatias/metabolismo , Proteínas tau/metabolismo , Animais , Proliferação de Células/fisiologia , Proteína Duplacortina , Hipocampo/patologia , Memória/fisiologia , Camundongos , Camundongos Transgênicos , Células-Tronco Neurais/metabolismo , Neurônios/patologia , Tauopatias/genética , Tauopatias/patologia , Proteínas tau/genética
4.
Acta Neuropathol ; 137(3): 397-412, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30599077

RESUMO

Neuropathological analysis in Alzheimer's disease (AD) and experimental evidence in transgenic models overexpressing frontotemporal dementia with Parkinsonism linked to chromosome 17 (FTDP-17) mutant tau suggest that amyloid-ß pathology enhances the development of tau pathology. In this work, we analyzed this interaction independently of the overexpression of an FTDP-17 mutant tau, by analyzing tau pathology in wild-type (WT), 5xFAD, APP-/- and tau-/- mice after stereotaxic injection in the somatosensory cortex of short-length native human AD-PHF. Gallyas and phosphotau-positive tau inclusions developed in WT, 5xFAD, and APP-/- but not in tau-/- mice. Ultrastructural analysis demonstrated their intracellular localization and that they were composed of straight filaments. These seeded tau inclusions were composed only of endogenous murine tau exhibiting a tau antigenic profile similar to tau aggregates in AD. Insoluble tau level was higher and ipsilateral anteroposterior and contralateral cortical spreading of tau inclusions was more important in AD-PHF-injected 5xFAD mice than in WT mice. The formation of large plaque-associated dystrophic neurites positive for oligomeric and phosphotau was observed in 5xFAD mice injected with AD-PHF but never in control-injected or in non-injected 5xFAD mice. An increased level of the p25 activator of CDK5 kinase was found in AD-PHF-injected 5xFAD mice. These data demonstrate in vivo that the presence of Aß pathology enhances experimentally induced tau seeding of endogenous, wild-type tau expressed at physiological level, and demonstrate the fibrillar nature of heterotopically seeded endogenous tau. These observations further support the hypothesis that Aß enhances tau pathology development in AD through increased pathological tau spreading.


Assuntos
Doença de Alzheimer/patologia , Peptídeos beta-Amiloides/metabolismo , Emaranhados Neurofibrilares/patologia , Proteínas tau/metabolismo , Animais , Humanos , Camundongos , Camundongos Knockout
5.
Am J Hum Genet ; 97(5): 726-37, 2015 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-26456284

RESUMO

Hereditary cerebellar ataxias (CAs) are neurodegenerative disorders clinically characterized by a cerebellar syndrome, often accompanied by other neurological or non-neurological signs. All transmission modes have been described. In autosomal-dominant CA (ADCA), mutations in more than 30 genes are implicated, but the molecular diagnosis remains unknown in about 40% of cases. Implication of ion channels has long been an ongoing topic in the genetics of CA, and mutations in several channel genes have been recently connected to ADCA. In a large family affected by ADCA and mild pyramidal signs, we searched for the causative variant by combining linkage analysis and whole-exome sequencing. In CACNA1G, we identified a c.5144G>A mutation, causing an arginine-to-histidine (p.Arg1715His) change in the voltage sensor S4 segment of the T-type channel protein Cav3.1. Two out of 479 index subjects screened subsequently harbored the same mutation. We performed electrophysiological experiments in HEK293T cells to compare the properties of the p.Arg1715His and wild-type Cav3.1 channels. The current-voltage and the steady-state activation curves of the p.Arg1715His channel were shifted positively, whereas the inactivation curve had a higher slope factor. Computer modeling in deep cerebellar nuclei (DCN) neurons suggested that the mutation results in decreased neuronal excitability. Taken together, these data establish CACNA1G, which is highly expressed in the cerebellum, as a gene whose mutations can cause ADCA. This is consistent with the neuropathological examination, which showed severe Purkinje cell loss. Our study further extends our knowledge of the link between calcium channelopathies and CAs.


Assuntos
Canais de Cálcio Tipo T/genética , Cálcio/metabolismo , Ataxia Cerebelar/genética , Ataxia Cerebelar/patologia , Mutação/genética , Neurônios/patologia , Adolescente , Adulto , Idoso , Sequência de Aminoácidos , Ataxia Cerebelar/metabolismo , Criança , Eletrofisiologia , Feminino , Genes Dominantes , Células HEK293 , Humanos , Masculino , Pessoa de Meia-Idade , Dados de Sequência Molecular , Neurônios/metabolismo , Linhagem , Fenótipo , Células de Purkinje/metabolismo , Células de Purkinje/patologia , Homologia de Sequência de Aminoácidos , Adulto Jovem
6.
Acta Neuropathol ; 135(2): 201-212, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29209767

RESUMO

Abeta deposits and tau pathology were investigated in 24 French patients that died from iatrogenic Creutzfeldt-Jakob disease after exposure to cadaver-derived human growth hormone (c-hGH) in the 1980s. Abeta deposits were found only in one case that had experienced one of the longest incubation periods. Three cases had also intracellular tau accumulation. The analysis of 24 batches of c-hGH, produced between 1974 and 1988, demonstrated for the first time the presence of Abeta and tau contaminants in c-hGH (in 17 and 6 batches, respectively). The incubation of prion disease was shorter in the French patients than the incubation times reported in two previously published British series. We interpreted the low incidence of Abeta in this French series as a consequence of the shorter incubation period observed in France, as compared to that observed in the United Kingdom. This concept suggested that a mean incubation period for the development of detectable Abeta deposits would be longer than 18 years after the first exposure. Moreover, we hypothesized that tau pathology might also be transmissible in humans.


Assuntos
Encéfalo/patologia , Síndrome de Creutzfeldt-Jakob/patologia , Síndrome de Creutzfeldt-Jakob/transmissão , Contaminação de Medicamentos , Hormônio do Crescimento Humano , Adulto , Peptídeos beta-Amiloides/metabolismo , Encéfalo/metabolismo , Cadáver , Estudos de Coortes , Síndrome de Creutzfeldt-Jakob/metabolismo , França , Hormônio do Crescimento Humano/administração & dosagem , Humanos , Doença Iatrogênica , Imunoensaio , Período de Incubação de Doenças Infecciosas , Proteínas Priônicas/genética , Proteínas Priônicas/metabolismo , Adulto Jovem , Proteínas tau/metabolismo
7.
Am J Pathol ; 186(10): 2709-22, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27497324

RESUMO

In Alzheimer disease, the development of tau pathology follows neuroanatomically connected pathways, suggesting that abnormal tau species might recruit normal tau by passage from cell to cell. Herein, we analyzed the effect of stereotaxic brain injection of human Alzheimer high-molecular-weight paired helical filaments (PHFs) in the dentate gyrus of wild-type and mutant tau THY-Tau22 mice. After 3 months of incubation, wild-type and THY-Tau22 mice developed an atrophy of the dentate gyrus and a tau pathology characterized by Gallyas and tau-positive grain-like inclusions into granule cells that extended in the hippocampal hilus and eventually away into the alveus, and the fimbria. Gallyas-positive neuropil threads and oligodendroglial coiled bodies were also observed. These tau inclusions were composed only of mouse tau, and were immunoreactive with antibodies to 4R tau, phosphotau, misfolded tau, ubiquitin, and p62. Although local hyperphosphorylation of tau was increased in the dentate gyrus in THY-Tau22 mice, the development of neurofibrillary tangles made of mutant human tau was not accelerated in the hippocampus, indicating that wild-type human PHFs were inefficient in seeding tau aggregates made of G272V/P301S mutant human tau. Our results indicate thus that injection of human wild-type Alzheimer PHF seeded aggregation of wild-type murine tau into an argyrophilic 4R tau pathology, and constitutes an interesting model independent of expression of a mutant tau protein.


Assuntos
Doença de Alzheimer/patologia , Citoesqueleto/patologia , Emaranhados Neurofibrilares/patologia , Proteínas tau/metabolismo , Idoso , Idoso de 80 Anos ou mais , Doença de Alzheimer/metabolismo , Animais , Comportamento Animal , Encéfalo/metabolismo , Encéfalo/patologia , Células CHO , Cricetulus , Citoesqueleto/metabolismo , Modelos Animais de Doenças , Feminino , Hipocampo/metabolismo , Hipocampo/patologia , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Emaranhados Neurofibrilares/metabolismo , Isoformas de Proteínas , Proteínas tau/genética
8.
Neurobiol Dis ; 94: 32-43, 2016 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-27260836

RESUMO

Single nucleotide polymorphisms in PICALM, a key component of clathrin-mediated endocytosis machinery, have been identified as genetic susceptibility loci for late onset Alzheimer's disease (LOAD). We previously reported that PICALM protein levels were decreased in AD brains and that PICALM was co-localised with neurofibrillary tangles in LOAD, familial AD with PSEN1 mutations and Down syndrome. In the present study, we analysed PICALM expression, cell localisation and association with pathological cellular inclusions in other tauopathies and in non-tau related neurodegenerative diseases. We observed that PICALM was associated with neuronal tau pathology in Pick disease and in progressive supranuclear palsy (PSP) and co-localised with both 3R and 4R tau positive inclusions unlike in corticobasal degeneration (CBD) or in frontotemporal lobar degeneration (FTLD)-MAPT P301L. PICALM immunoreactivities were not detected in tau-positive tufted astrocytes in PSP, astrocytic plaques in CBD, Lewy bodies in Lewy body disease, diffuse type (LBD) and in TDP-43-positive inclusions in FTLD. In the frontal cortex in tauopathies, the ratio of insoluble to soluble PICALM was increased while the level of soluble PICALM was decreased and was inversely correlated with the level of phosphotau. PICALM decrease was also significantly correlated with increased LC3-II and decreased Beclin-1 levels in tauopathies and in non-tau related neurodegenerative diseases. These results suggest that there is a close relationship between abnormal PICALM processing, tau pathology and impairment of autophagy in human neurodegenerative diseases.


Assuntos
Doença de Alzheimer/metabolismo , Proteínas Relacionadas à Autofagia/metabolismo , Clatrina/metabolismo , Endocitose/fisiologia , Proteínas Monoméricas de Montagem de Clatrina/metabolismo , Doença de Pick/metabolismo , Pneumotórax/metabolismo , Proteínas tau/metabolismo , Encéfalo/metabolismo , Degeneração Lobar Frontotemporal/metabolismo , Humanos , Emaranhados Neurofibrilares/metabolismo , Neurônios/metabolismo , Fosforilação , Paralisia Supranuclear Progressiva/metabolismo , Tauopatias/patologia
9.
Brain ; 137(Pt 2): 537-52, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24401760

RESUMO

ITPKB phosphorylates inositol 1,4,5-trisphosphate into inositol 1,3,4,5-tetrakisphosphate and controls signal transduction in various hematopoietic cells. Surprisingly, it has been reported that the ITPKB messenger RNA level is significantly increased in the cerebral cortex of patients with Alzheimer's disease, compared with control subjects. As extracellular signal-regulated kinases 1/2 activation is increased in the Alzheimer brain and as ITPKB is a regulator of extracellular signal-regulated kinases 1/2 activation in some hematopoietic cells, we tested whether this increased activation in Alzheimer's disease might be related to an increased activity of ITPKB. We show here that ITPKB protein level was increased 3-fold in the cerebral cortex of most patients with Alzheimer's disease compared with control subjects, and accumulated in dystrophic neurites associated to amyloid plaques. In mouse Neuro-2a neuroblastoma cells, Itpkb overexpression was associated with increased cell apoptosis and increased ß-secretase 1 activity leading to overproduction of amyloid-ß peptides. In this cellular model, an inhibitor of mitogen-activated kinase kinases 1/2 completely prevented overproduction of amyloid-ß peptides. Transgenic overexpression of ITPKB in mouse forebrain neurons was not sufficient to induce amyloid plaque formation or tau hyperphosphorylation. However, in the 5X familial Alzheimer's disease mouse model, neuronal ITPKB overexpression significantly increased extracellular signal-regulated kinases 1/2 activation and ß-secretase 1 activity, resulting in exacerbated Alzheimer's disease pathology as shown by increased astrogliosis, amyloid-ß40 peptide production and tau hyperphosphorylation. No impact on pathology was observed in the 5X familial Alzheimer's disease mouse model when a catalytically inactive ITPKB protein was overexpressed. Together, our results point to the ITPKB/inositol 1,3,4,5-tetrakisphosphate/extracellular signal-regulated kinases 1/2 signalling pathway as an important regulator of neuronal cell apoptosis, APP processing and tau phosphorylation in Alzheimer's disease, and suggest that ITPKB could represent a new target for reducing pathology in human patients with Alzheimer's disease with ITPKB expression.


Assuntos
Doença de Alzheimer/enzimologia , Doença de Alzheimer/patologia , Encéfalo/enzimologia , Encéfalo/patologia , Fosfotransferases (Aceptor do Grupo Álcool)/biossíntese , Idoso , Idoso de 80 Anos ou mais , Animais , Apoptose/fisiologia , Linhagem Celular Tumoral , Feminino , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Pessoa de Meia-Idade , Neuritos/patologia , Neuroblastoma/enzimologia , Neuroblastoma/patologia , Fosfotransferases (Aceptor do Grupo Álcool)/fisiologia , Placa Amiloide/patologia
10.
Neurobiol Dis ; 62: 100-12, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24076100

RESUMO

Neurofibrillary degeneration in transgenic models of tauopathies has been observed to be enhanced when these models are crossed with transgenic models developing an Aß pathology. The mechanisms leading to this enhanced tau pathology are not well understood. We have performed a detailed analysis of tau misprocessing in a new transgenic mouse model combining APP, PS1 and tau mutations (5xFAD×Tg30 mice) by comparison with littermates expressing only a FTD mutant tau (Tg30 mice). These 5xFAD×Tg30 mice showed a more severe deficient motor phenotype than Tg30 mice and developed with age a dramatically accelerated NFT load in the brain compared to Tg30 mice. Insoluble tau in 5xFAD×Tg30 mice compared to insoluble tau in Tg30 mice showed increased phosphorylation, enhanced misfolding and truncation changes mimicking more closely the post-translational changes characteristic of PHF-tau in Alzheimer's disease. Endogenous wild-type mouse tau was recruited at much higher levels in insoluble tau in 5xFAD×Tg30 than in Tg30 mice. Extracellular amyloid load, Aß40 and Aß42, ß-CTFs and ß-CTF phosphorylation levels were lower in 5xFAD×Tg30 mice than in 5xFAD mice. Despite this reduction of Aß, a significant hippocampal neuronal loss was observed in 5xFAD×Tg30 but not in 5xFAD mice indicating its closer association with increased tau pathology. This 5xFAD×Tg30 model thus mimics more faithfully tau pathology and neuronal loss observed in AD and suggests that additional post-translational changes in tau and self-recruitment of endogenous tau drive the enhanced tau pathology developing in the presence of Aß pathology.


Assuntos
Precursor de Proteína beta-Amiloide/genética , Córtex Cerebral/ultraestrutura , Placa Amiloide/ultraestrutura , Presenilina-1/genética , Proteínas tau/genética , Proteínas tau/metabolismo , Fatores Etários , Precursor de Proteína beta-Amiloide/metabolismo , Animais , Hipocampo/ultraestrutura , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Mutantes , Camundongos Transgênicos , Fosforilação , Presenilina-1/metabolismo , Dobramento de Proteína , Células Piramidais/patologia , Medula Espinal/metabolismo , Medula Espinal/patologia , Taxa de Sobrevida , Proteínas tau/química
11.
Front Mol Neurosci ; 17: 1423340, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38984196

RESUMO

Alzheimer's disease (AD) affects the elderly population by causing memory impairments, cognitive and behavioral abnormalities. Currently, no curative treatments exist, emphasizing the need to explore therapeutic options that modify the progression of the disease. MicroRNAs (miRNAs), as non-coding RNAs, demonstrate multifaceted targeting potential and are known to be dysregulated in AD pathology. This mini review focuses on two promising miRNAs, hsa-miR-132 and hsa-miR-129, which consistently exhibit differential regulation in AD. By employing computational predictions and referencing published RNA sequencing dataset, we elucidate the intricate miRNA-mRNA target relationships associated with hsa-miR-132 and hsa-miR-129. Our review consistently identifies the downregulation of hsa-miR-132 and hsa-miR-129 in AD brains as a non-coding RNA molecular signature across studies conducted over the past 15 years in AD research.

12.
Am J Pathol ; 181(6): 1928-40, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23026200

RESUMO

Lack of tau expression has been reported to protect against excitotoxicity and to prevent memory deficits in mice expressing mutant amyloid precursor protein (APP) identified in familial Alzheimer disease. In APP mice, mutant presenilin 1 (PS1) enhances generation of Aß42 and inhibits cell survival pathways. It is unknown whether the deficient phenotype induced by concomitant expression of mutant PS1 is rescued by absence of tau. In this study, we have analyzed the effect of tau deletion in mice expressing mutant APP and PS1. Although APP/PS1/tau(+/+) mice had a reduced survival, developed spatial memory deficits at 6 months and motor impairments at 12 months, these deficits were rescued in APP/PS1/tau(-/-) mice. Neuronal loss and synaptic loss in APP/PS1/tau(+/+) mice were rescued in the APP/PS1/tau(-/-) mice. The amyloid plaque burden was decreased by roughly 50% in the cortex and the spinal cord of the APP/PS1/tau(-/-) mice. The levels of soluble and insoluble Aß40 and Aß42, and the Aß42/Aß40 ratio were reduced in APP/PS1/tau(-/-) mice. Levels of phosphorylated APP, of ß-C-terminal fragments (CTFs), and of ß-secretase 1 (BACE1) were also reduced, suggesting that ß-secretase cleavage of APP was reduced in APP/PS1/tau(-/-) mice. Our results indicate that tau deletion had a protective effect against amyloid induced toxicity even in the presence of mutant PS1 and reduced the production of Aß.


Assuntos
Precursor de Proteína beta-Amiloide/metabolismo , Neurônios/metabolismo , Neurônios/patologia , Presenilina-1/metabolismo , Processamento de Proteína Pós-Traducional , Proteínas tau/deficiência , Secretases da Proteína Precursora do Amiloide/metabolismo , Precursor de Proteína beta-Amiloide/química , Animais , Ácido Aspártico Endopeptidases/metabolismo , Morte Celular , Espinhas Dendríticas/patologia , Espinhas Dendríticas/ultraestrutura , Humanos , Memória de Curto Prazo , Camundongos , Camundongos Transgênicos , Atividade Motora , Neuroglia/metabolismo , Neuroglia/patologia , Neurônios/ultraestrutura , Fosforilação , Fosfotreonina/metabolismo , Placa Amiloide/metabolismo , Placa Amiloide/patologia , Placa Amiloide/fisiopatologia , Solubilidade , Análise de Sobrevida , Sinapses/patologia , Sinapses/ultraestrutura , Proteínas tau/metabolismo
13.
Acta Neuropathol ; 125(6): 861-78, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23589030

RESUMO

PICALM, a clathrin adaptor protein, plays important roles in clathrin-mediated endocytosis in all cell types. Recently, genome-wide association studies identified single nucleotide polymorphisms in PICALM gene as genetic risk factors for late-onset Alzheimer disease (LOAD). We analysed by western blotting with several anti-PICALM antibodies the pattern of expression of PICALM in human brain extracts. We found that PICALM was abnormally cleaved in AD samples and that the level of the uncleaved 65-75 kDa full-length PICALM species was significantly decreased in AD brains. Cleavage of human PICALM after activation of endogenous calpain or caspase was demonstrated in vitro. Immunohistochemistry revealed that PICALM was associated in situ with neurofibrillary tangles, co-localising with conformationally abnormal and hyperphosphorylated tau in LOAD, familial AD and Down syndrome cases. PHF-tau proteins co-immunoprecipitated with PICALM. PICALM was highly expressed in microglia in LOAD. These observations suggest that PICALM is associated with the development of AD tau pathology. PICALM cleavage could contribute to endocytic dysfunction in AD.


Assuntos
Doença de Alzheimer/metabolismo , Doença de Alzheimer/patologia , Proteínas Monoméricas de Montagem de Clatrina/metabolismo , Emaranhados Neurofibrilares/metabolismo , Emaranhados Neurofibrilares/patologia , Adulto , Idoso , Idoso de 80 Anos ou mais , Doença de Alzheimer/etiologia , Estudos de Casos e Controles , Síndrome de Down/etiologia , Síndrome de Down/metabolismo , Síndrome de Down/patologia , Feminino , Humanos , Masculino , Microglia/fisiologia , Pessoa de Meia-Idade , Proteínas tau/metabolismo
14.
Am J Pathol ; 178(2): 803-16, 2011 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-21281813

RESUMO

Many models of human tauopathies have been generated in mice by expression of a human mutant tau with maintained expression of mouse endogenous tau. Because murine tau might interfere with the toxic effects of human mutant tau, we generated a model in which a pathogenic human tau protein is expressed in the absence of wild-type tau protein, with the aim of facilitating the study of the pathogenic role of the mutant tau and to reproduce more faithfully a human tauopathy. The Tg30 line is a tau transgenic mouse model overexpressing human 1N4R double-mutant tau (P301S and G272V) that develops Alzheimer's disease-like neurofibrillary tangles in an age-dependent manner. By crossing Tg30 mice with mice invalidated for their endogenous tau gene, we obtained Tg30xtau(-/-) mice that express only exogenous human double-mutant 1N4R tau. Although Tg30xtau(-/-) mice express less tau protein compared with Tg30, they exhibit signs of decreased survival, increased proportion of sarkosyl-insoluble tau in the brain and in the spinal cord, increased number of Gallyas-positive neurofibrillary tangles in the hippocampus, increased number of inclusions in the spinal cord, and a more severe motor phenotype. Deletion of murine tau accelerated tau aggregation during aging of this mutant tau transgenic model, suggesting that murine tau could interfere with the development of tau pathology in transgenic models of human tauopathies.


Assuntos
Técnicas de Inativação de Genes , Proteínas Associadas aos Microtúbulos/metabolismo , Proteínas Mutantes/química , Proteínas Mutantes/metabolismo , Proteínas tau/metabolismo , Animais , Contagem de Células , Quinase 3 da Glicogênio Sintase/metabolismo , Glicogênio Sintase Quinase 3 beta , Hipocampo/efeitos dos fármacos , Hipocampo/metabolismo , Hipocampo/patologia , Humanos , Corpos de Inclusão Intranuclear/efeitos dos fármacos , Corpos de Inclusão Intranuclear/patologia , Corpos de Inclusão Intranuclear/ultraestrutura , Memória de Curto Prazo/efeitos dos fármacos , Camundongos , Camundongos Transgênicos , Modelos Animais , Atividade Motora/efeitos dos fármacos , Emaranhados Neurofibrilares/efeitos dos fármacos , Emaranhados Neurofibrilares/metabolismo , Emaranhados Neurofibrilares/patologia , Emaranhados Neurofibrilares/ultraestrutura , Fosforilação/efeitos dos fármacos , Processamento de Proteína Pós-Traducional/efeitos dos fármacos , Estrutura Quaternária de Proteína , Sarcosina/análogos & derivados , Sarcosina/farmacologia , Nervo Isquiático/efeitos dos fármacos , Nervo Isquiático/patologia , Solubilidade/efeitos dos fármacos , Medula Espinal/efeitos dos fármacos , Medula Espinal/metabolismo , Medula Espinal/patologia , Análise de Sobrevida , Proteínas tau/química
15.
Cells ; 11(24)2022 12 10.
Artigo em Inglês | MEDLINE | ID: mdl-36552756

RESUMO

Genome-wide association studies (GWAS) have identified the PICALM (Phosphatidylinositol binding clathrin-assembly protein) gene as the most significant genetic susceptibility locus after APOE and BIN1. PICALM is a clathrin-adaptor protein that plays a critical role in clathrin-mediated endocytosis and autophagy. Since the effects of genetic variants of PICALM as AD-susceptibility loci have been confirmed by independent genetic studies in several distinct cohorts, there has been a number of in vitro and in vivo studies attempting to elucidate the underlying mechanism by which PICALM modulates AD risk. While differential modulation of APP processing and Aß transcytosis by PICALM has been reported, significant effects of PICALM modulation of tau pathology progression have also been evidenced in Alzheimer's disease models. In this review, we summarize the current knowledge about PICALM, its physiological functions, genetic variants, post-translational modifications and relevance to AD pathogenesis.


Assuntos
Doença de Alzheimer , Proteínas Monoméricas de Montagem de Clatrina , Humanos , Doença de Alzheimer/genética , Doença de Alzheimer/metabolismo , Clatrina/metabolismo , Loci Gênicos , Predisposição Genética para Doença , Estudo de Associação Genômica Ampla , Proteínas Monoméricas de Montagem de Clatrina/genética , Proteínas Monoméricas de Montagem de Clatrina/metabolismo
16.
Front Neurol ; 12: 610330, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33643196

RESUMO

Adult hippocampal neurogenesis (AHN) has been widely confirmed in mammalian brains. A growing body of evidence points to the fact that AHN sustains hippocampal-dependent functions such as learning and memory. Impaired AHN has been reported in post-mortem human brain hippocampus of Alzheimer's disease (AD) and is considered to contribute to defects in learning and memory. Neurofibrillary tangles (NFTs) and amyloid plaques are the two key neuropathological hallmarks of AD. NFTs are composed of abnormal tau proteins accumulating in many brain areas during the progression of the disease, including in the hippocampus. The physiological role of tau and impact of tau pathology on AHN is still poorly understood. Modifications in AHN have also been reported in some tau transgenic and tau-deleted mouse models. We present here a brief review of advances in the relationship between development of tau pathology and AHN in AD and what insights have been gained from studies in tau mouse models.

17.
Biochem Soc Trans ; 38(4): 996-1000, 2010 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-20658992

RESUMO

NFTs (neurofibrillary tangles) in Alzheimer's disease and in tauopathies are hallmark neuropathological lesions whose relationship with neuronal dysfunction, neuronal death and with other lesions [such as Abeta (amyloid beta-peptide) pathology] are still imperfectly understood. Many transgenic mice overexpressing wild-type or mutant tau proteins have been generated to investigate the physiopathology of tauopathies. Most of the mice overexpressing wild-type tau do not develop NFTs, but can develop a severe axonopathy, whereas overexpression of mutant tau leads to NFT formation, synaptic loss and neuronal death in several models. The association between neuronal death and NFTs has, however, been challenged in some models showing a dissociation between tau aggregation and tau toxicity. Cross-breeding of mice developing NFTs with mice developing Abeta deposits increases NFT pathology, highlighting the relationship between tau and amyloid pathology. On the other hand, tau expression seems to be necessary for expression of a pathological phenotype associated with amyloid pathology. These findings suggest that there is a bilateral cross-talk between Abeta and tau pathology. These observations are discussed by the presentation of some relevant models developed recently.


Assuntos
Animais Geneticamente Modificados , Modelos Animais de Doenças , Tauopatias/genética , Tauopatias/patologia , Peptídeos beta-Amiloides/genética , Peptídeos beta-Amiloides/metabolismo , Animais , Morte Celular , Humanos , Camundongos , Neurônios/metabolismo , Neurônios/patologia , Neurônios/fisiologia , Multimerização Proteica/fisiologia , Proteínas tau/genética , Proteínas tau/metabolismo
18.
Biochem Soc Trans ; 38(4): 1001-5, 2010 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-20658993

RESUMO

We have reported previously a tau transgenic mouse model (Tg30tau) overexpressing human 4R1N double-mutant tau (P301S and G272V) and that develops AD (Alzheimer's disease)-like NFTs (neurofibrillary tangles) in an age-dependent manner. Since murine tau might interfere with the toxic effects of human mutant tau, we set out to analyse the phenotype of our Tg30tau model in the absence of endogenous murine tau with the aim to reproduce more faithfully a model of human tauopathy. By crossing the Tg30tau line with TauKO (tau-knockout) mice, we have obtained a new mouse line called Tg30xTauKO that expresses only exogenous human double-mutant 4R1N tau. Whereas Tg30xTauKO mice express fewer tau proteins compared with Tg30tau, they exhibit augmented sarkosyl-insoluble tau in the brain and an increased number of Gallyas-positive NFTs in the hippocampus. Taken together, exclusion of murine tau causes accelerated tau aggregation during aging of this mutant tau transgenic model.


Assuntos
Modelos Animais de Doenças , Deleção de Genes , Tauopatias/patologia , Proteínas tau/genética , Proteínas tau/metabolismo , Doença de Alzheimer/genética , Doença de Alzheimer/metabolismo , Animais , Precipitação Química , Humanos , Camundongos , Camundongos Transgênicos , Proteínas Mutantes/metabolismo , Proteínas Mutantes/fisiologia , Multimerização Proteica/genética , Multimerização Proteica/fisiologia , Tauopatias/genética , Tauopatias/metabolismo , Regulação para Cima
19.
Front Mol Neurosci ; 13: 106, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32765217

RESUMO

Alzheimer's disease (AD) is characterized by the accumulation in the brain of intraneuronal aggregates of abnormally and hyperphosphorylated tau proteins and of extracellular deposits of amyloid-ß surrounded by dystrophic neurites. Numerous experimental models have shown that tau pathology develops in the brain after intracerebral injection of brain homogenates or pathological tau [paired helical filaments (PHF)-tau)] from AD brains. Further investigations are however necessary to identify or exclude potential extracerebral routes of tau pathology transmission, e.g., through the intravascular route. In this study, we have analyzed the effect of intravenous injection of PHF-tau proteins from AD brains on the formation of tau and amyloid pathologies in the brain of wild-type (WT) mice and of 5XFAD mice (an amyloid model). We observed that 5XFAD mice with a disrupted blood-brain barrier showed increased plaque-associated astrogliosis, microgliosis, and increased deposits of Aß40 and Aß42 after intravenous injection of PHF-tau proteins. In addition, an increased phosphotau immunoreactivity was observed in plaque-associated dystrophic neurites. These results suggest that blood products contaminated by PHF-tau proteins could potentially induce an exacerbation of neuroinflammation and AD pathologies.

20.
Acta Neuropathol Commun ; 8(1): 79, 2020 06 03.
Artigo em Inglês | MEDLINE | ID: mdl-32493451

RESUMO

Synaptojanin 1 (SYNJ1) is a brain-enriched lipid phosphatase critically involved in autophagosomal/endosomal trafficking, synaptic vesicle recycling and metabolism of phosphoinositides. Previous studies suggest that SYNJ1 polymorphisms have significant impact on the age of onset of Alzheimer's disease (AD) and that SYNJ1 is involved in amyloid-induced toxicity. Yet SYNJ1 protein level and cellular localization in post-mortem human AD brain tissues have remained elusive. This study aimed to examine whether SYNJ1 localization and expression are altered in post-mortem AD brains. We found that SYNJ1 is accumulated in Hirano bodies, plaque-associated dystrophic neurites and some neurofibrillary tangles (NFTs). SYNJ1 immunoreactivity was higher in neurons and in the senile plaques in AD patients carrying one or two ApolipoproteinE (APOE) ε4 allele(s). In two large cohorts of APOE-genotyped controls and AD patients, SYNJ1 transcripts were significantly increased in AD temporal isocortex compared to control. There was a significant increase in SYNJ1 transcript in APOEε4 carriers compared to non-carriers in AD cohort. SYNJ1 was systematically co-enriched with PHF-tau in the sarkosyl-insoluble fraction of AD brain. In the RIPA-insoluble fraction containing protein aggregates, SYNJ1 proteins were significantly increased and observed as a smear containing full-length and cleaved fragments in AD brains. In vitro cleavage assay showed that SYNJ1 is a substrate of calpain, which is highly activated in AD brains. Our study provides evidence of alterations in SYNJ1 mRNA level and SYNJ1 protein degradation, solubility and localization in AD brains.


Assuntos
Doença de Alzheimer/metabolismo , Doença de Alzheimer/patologia , Encéfalo/patologia , Monoéster Fosfórico Hidrolases/metabolismo , Agregação Patológica de Proteínas/patologia , Idoso , Apolipoproteínas E/genética , Encéfalo/metabolismo , Calpaína/metabolismo , Células HEK293 , Humanos , Neurônios/metabolismo , Neurônios/patologia , Proteínas tau/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA