Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Cell Mol Life Sci ; 80(1): 32, 2023 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-36609589

RESUMO

Protein quality control (PQC) degrons are short protein segments that target misfolded proteins for proteasomal degradation, and thus protect cells against the accumulation of potentially toxic non-native proteins. Studies have shown that PQC degrons are hydrophobic and rarely contain negatively charged residues, features which are shared with chaperone-binding regions. Here we explore the notion that chaperone-binding regions may function as PQC degrons. When directly tested, we found that a canonical Hsp70-binding motif (the APPY peptide) functioned as a dose-dependent PQC degron both in yeast and in human cells. In yeast, Hsp70, Hsp110, Fes1, and the E3 Ubr1 target the APPY degron. Screening revealed that the sequence space within the chaperone-binding region of APPY that is compatible with degron function is vast. We find that the number of exposed Hsp70-binding sites in the yeast proteome correlates with a reduced protein abundance and half-life. Our results suggest that when protein folding fails, chaperone-binding sites may operate as PQC degrons, and that the sequence properties leading to PQC-linked degradation therefore overlap with those of chaperone binding.


Assuntos
Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Humanos , Saccharomyces cerevisiae/metabolismo , Complexo de Endopeptidases do Proteassoma/metabolismo , Proteínas de Choque Térmico HSP70/metabolismo , Proteólise , Dobramento de Proteína , Ubiquitina-Proteína Ligases/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo
2.
PLoS Genet ; 17(4): e1009539, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33914734

RESUMO

Canavan disease is a severe progressive neurodegenerative disorder that is characterized by swelling and spongy degeneration of brain white matter. The disease is genetically linked to polymorphisms in the aspartoacylase (ASPA) gene, including the substitution C152W. ASPA C152W is associated with greatly reduced protein levels in cells, yet biophysical experiments suggest a wild-type like thermal stability. Here, we use ASPA C152W as a model to investigate the degradation pathway of a disease-causing protein variant. When we expressed ASPA C152W in Saccharomyces cerevisiae, we found a decreased steady state compared to wild-type ASPA as a result of increased proteasomal degradation. However, molecular dynamics simulations of ASPA C152W did not substantially deviate from wild-type ASPA, indicating that the native state is structurally preserved. Instead, we suggest that the C152W substitution interferes with the de novo folding pathway resulting in increased proteasomal degradation before reaching its stable conformation. Systematic mapping of the protein quality control components acting on misfolded and aggregation-prone species of C152W, revealed that the degradation is highly dependent on the molecular chaperone Hsp70, its co-chaperone Hsp110 as well as several quality control E3 ubiquitin-protein ligases, including Ubr1. In addition, the disaggregase Hsp104 facilitated refolding of aggregated ASPA C152W, while Cdc48 mediated degradation of insoluble ASPA protein. In human cells, ASPA C152W displayed increased proteasomal turnover that was similarly dependent on Hsp70 and Hsp110. Our findings underscore the use of yeast to determine the protein quality control components involved in the degradation of human pathogenic variants in order to identify potential therapeutic targets.


Assuntos
Amidoidrolases/genética , Doença de Canavan/genética , Proteínas de Choque Térmico HSP110/genética , Proteínas de Choque Térmico HSP70/genética , Substituição de Aminoácidos/genética , Doença de Canavan/patologia , Proteínas de Choque Térmico/genética , Humanos , Chaperonas Moleculares/genética , Mutação/genética , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Ubiquitina-Proteína Ligases/genética
3.
EMBO Rep ; 20(10): e47865, 2019 10 04.
Artigo em Inglês | MEDLINE | ID: mdl-31531937

RESUMO

The eukaryotic cell is morphologically and functionally organized as an interconnected network of organelles that responds to stress and aging. Organelles communicate via dedicated signal transduction pathways and the transfer of information in form of metabolites and energy levels. Recent data suggest that the communication between organellar proteostasis systems is a cornerstone of cellular stress responses in eukaryotic cells. Here, we discuss the integration of proteostasis and energy fluxes in the regulation of cellular stress and aging. We emphasize the molecular architecture of the regulatory transcriptional pathways that both sense and control metabolism and proteostasis. A special focus is placed on mechanistic insights gained from the model organism budding yeast in signaling from mitochondria to the nucleus and how this shapes cellular fitness.


Assuntos
Mitocôndrias/metabolismo , Proteostase , Estresse Fisiológico , Animais , Núcleo Celular/metabolismo , Humanos , Agregados Proteicos , Transcrição Gênica
4.
Exp Cell Res ; 396(1): 112246, 2020 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-32861670

RESUMO

Heat shock factor 1 (Hsf1) is an ancient transcription factor that monitors protein homeostasis (proteostasis) and counteracts disturbances by triggering a transcriptional programme known as the heat shock response (HSR). The HSR is transiently activated and upregulates the expression of core proteostasis genes, including chaperones. Dysregulation of Hsf1 and its target genes are associated with disease; cancer cells rely on a constitutively active Hsf1 to promote rapid growth and malignancy, whereas Hsf1 hypoactivation in neurodegenerative disorders results in formation of toxic aggregates. These central but opposing roles highlight the importance of understanding the underlying molecular mechanisms that control Hsf1 activity. According to current understanding, Hsf1 is maintained latent by chaperone interactions but proteostasis perturbations titrate chaperone availability as a result of chaperone sequestration by misfolded proteins. Liberated and activated Hsf1 triggers a negative feedback loop by inducing the expression of key chaperones. Until recently, Hsp90 has been highlighted as the central negative regulator of Hsf1 activity. In this review, we focus on recent advances regarding how the Hsp70 chaperone controls Hsf1 activity and in addition summarise several additional layers of activity control.


Assuntos
Proteínas de Choque Térmico HSP70/metabolismo , Proteínas de Choque Térmico HSP90/metabolismo , Fatores de Transcrição de Choque Térmico/metabolismo , Neoplasias/metabolismo , Doenças Neurodegenerativas/metabolismo , Processamento de Proteína Pós-Traducional , Acilação , Retroalimentação Fisiológica , Proteínas de Choque Térmico HSP70/genética , Proteínas de Choque Térmico HSP90/genética , Fatores de Transcrição de Choque Térmico/genética , Resposta ao Choque Térmico/genética , Homeostase/genética , Humanos , Neoplasias/genética , Neoplasias/patologia , Doenças Neurodegenerativas/genética , Doenças Neurodegenerativas/patologia , Fosforilação , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Transdução de Sinais , Ubiquitinação
5.
Nucleic Acids Res ; 47(4): e22, 2019 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-30590609

RESUMO

Adenosine to inosine editing is common in the human transcriptome and changes of this essential activity is associated with disease. Children with ADAR1 mutations develop fatal Aicardi-Goutières syndrome characterized by aberrant interferon expression. In contrast, ADAR1 overexpression is associated with increased malignancy of breast, lung and liver cancer. ADAR1 silencing in breast cancer cells leads to increased apoptosis, suggesting an anti-apoptotic function that promotes cancer progression. Yet, suitable high-throughput editing assays are needed to efficiently screen chemical libraries for modifiers of ADAR1 activity. We describe the development of a bioluminescent reporter system that facilitates rapid and accurate determination of endogenous editing activity. The system is based on the highly sensitive and quantitative Nanoluciferase that is conditionally expressed upon reporter-transcript editing. Stably introduced into cancer cell lines, the system reports on elevated endogenous ADAR1 editing activity induced by interferon as well as knockdown of ADAR1 and ADAR2. In a single-well setup we used the reporter in HeLa cells to screen a small molecule library of 33 000 compounds. This yielded a primary hit rate of 0.9% at 70% inhibition of editing. Thus, we provide a key tool for high-throughput identification of modifiers of A-to-I editing activity in cancer cells.


Assuntos
Adenosina Desaminase/genética , Ensaios de Triagem em Larga Escala , Neoplasias/genética , Proteínas de Ligação a RNA/genética , Adenosina/genética , Apoptose/genética , Doenças Autoimunes do Sistema Nervoso/genética , Doenças Autoimunes do Sistema Nervoso/patologia , Edição de Genes/métodos , Genes Reporter/genética , Células HeLa , Humanos , Inosina/genética , Interferons/genética , Luciferases/genética , Medições Luminescentes/métodos , Nanopartículas/química , Neoplasias/tratamento farmacológico , Neoplasias/patologia , Malformações do Sistema Nervoso/genética , Malformações do Sistema Nervoso/patologia , Bibliotecas de Moléculas Pequenas/química , Transcriptoma/genética
6.
J Cell Sci ; 131(6)2018 03 20.
Artigo em Inglês | MEDLINE | ID: mdl-29507114

RESUMO

During protein quality control, proteotoxic misfolded proteins are recognized by molecular chaperones, ubiquitylated by dedicated quality control ligases and delivered to the 26S proteasome for degradation. Proteins belonging to the Hsp70 chaperone and Hsp110 (the Hsp70 nucleotide exchange factor) families function in the degradation of misfolded proteins by the ubiquitin-proteasome system via poorly understood mechanisms. Here, we report that the Saccharomyces cerevisiae Hsp110 proteins (Sse1 and Sse2) function in the degradation of Hsp70-associated ubiquitin conjugates at the post-ubiquitylation step and are also required for ubiquitin-independent proteasomal degradation. Hsp110 associates with the 19S regulatory particle of the 26S proteasome and interacts with Hsp70 to facilitate the delivery of Hsp70 substrates for proteasomal degradation. By using a highly defined ubiquitin-independent proteasome substrate, we show that the mere introduction of a single Hsp70-binding site renders its degradation dependent on Hsp110. The findings define a dedicated and chaperone-dependent pathway for the efficient shuttling of cellular proteins to the proteasome with profound implications for understanding protein quality control and cellular stress management.


Assuntos
Adenosina Trifosfatases/metabolismo , Autoantígenos/metabolismo , Proteínas de Choque Térmico HSP70/metabolismo , Complexo de Endopeptidases do Proteassoma/metabolismo , RNA Citoplasmático Pequeno/metabolismo , Ribonucleoproteínas/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Ubiquitina/metabolismo , Adenosina Trifosfatases/genética , Autoantígenos/genética , Proteínas de Choque Térmico HSP70/genética , Complexo de Endopeptidases do Proteassoma/genética , Ligação Proteica , Proteólise , RNA Citoplasmático Pequeno/genética , Ribonucleoproteínas/genética , Saccharomyces cerevisiae/enzimologia , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética
7.
Biol Chem ; 401(11): 1233-1248, 2020 10 25.
Artigo em Inglês | MEDLINE | ID: mdl-32745066

RESUMO

Chaperones of the 70 kDa heat shock protein (Hsp70) superfamily are key components of the cellular proteostasis system. Together with its co-chaperones, Hsp70 forms proteostasis subsystems that antagonize protein damage during physiological and stress conditions. This function stems from highly regulated binding and release cycles of protein substrates, which results in a flow of unfolded, partially folded and misfolded species through the Hsp70 subsystem. Specific factors control how Hsp70 makes decisions regarding folding and degradation fates of the substrate proteins. In this review, we summarize how the flow of Hsp70 substrates is controlled in the cell with special emphasis on recent advances regarding substrate release mechanisms.


Assuntos
Proteínas de Choque Térmico HSP70/metabolismo , Animais , Proteínas de Choque Térmico HSP70/análise , Humanos , Agregados Proteicos , Proteólise , Proteostase , Estresse Fisiológico
8.
J Biol Chem ; 293(22): 8362-8378, 2018 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-29661936

RESUMO

Ssy5 is a signaling endoprotease that plays a key role in regulating central metabolism, cellular aging, and morphological transitions important for growth and survival of yeast (Saccharomyces cerevisiae) cells. In response to extracellular amino acids, Ssy5 proteolytically activates the transcription factors Stp1 and Stp2, leading to enhanced Ssy1-Ptr3-Ssy5 (SPS) sensor-regulated gene expression. Ssy5 comprises a catalytic (Cat) domain and an extensive regulatory prodomain. Ssy5 is refractory to both broad-spectrum and serine protease-specific inhibitors, confounding its classification as a protease, and no information about Ssy5's cleavage-site preferences and its mechanism of substrate selection is available. Here, using mutational and inhibition experiments, we investigated the biogenesis and catalytic properties of Ssy5 and conclusively show that it is a serine protease. Atypical for the majority of serine proteases, Ssy5's prodomain was obligatorily required in cis during biogenesis for the maturation of the proteolytic activity of the Cat domain. Autolysis and Stp1 and Stp2 cleavage occurred between a cysteine (at the P1 site) and a serine or alanine (at the P'1 site) and required residues with short side chains at the P1 site. Substitutions in the Cat domain affecting substrate specificity revealed that residues Phe-634, His-661, and Gly-671 in the S1-binding pocket of this domain are important for Ssy5 catalytic function. This study confirms that the signaling protease Ssy5 is a serine protease and provides a detailed understanding of the biogenesis and intrinsic properties of this key enzyme in yeast.


Assuntos
Proteínas de Ligação a DNA/metabolismo , Mutação , Proteínas Nucleares/metabolismo , Proteínas de Ligação a RNA/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Serina Proteases/metabolismo , Fatores de Transcrição/metabolismo , Sequência de Aminoácidos , Proteínas de Ligação a DNA/genética , Mutagênese Sítio-Dirigida , Proteínas Nucleares/genética , Fosforilação , Proteínas de Ligação a RNA/genética , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/crescimento & desenvolvimento , Proteínas de Saccharomyces cerevisiae/genética , Homologia de Sequência , Serina Proteases/genética , Especificidade por Substrato , Fatores de Transcrição/genética
9.
Yeast ; 33(5): 191-200, 2016 05.
Artigo em Inglês | MEDLINE | ID: mdl-26860732

RESUMO

Reporter proteins are essential tools in the study of biological processes and are employed to monitor changes in gene expression and protein levels. Luciferases are reporter proteins that enable rapid and highly sensitive detection with an outstanding dynamic range. Here we evaluated the usefulness of the 19 kDa luciferase NanoLuc (Nluc), derived from the deep sea shrimp Oplophorus gracilirostris, as a reporter protein in yeast. Cassettes with codon-optimized genes expressing yeast Nluc (yNluc) or its destabilized derivative yNlucPEST have been assembled in the context of the dominant drug resistance marker kanMX. The reporter proteins do not impair the growth of yeast cells and exhibit half-lives of 40 and 5 min, respectively. The commercial substrate Nano-Glo® is compatible with detection of yNluc bioluminescence in < 50 cells. Using the unstable yNlucPEST to report on the rapid and transient expression of a heat-shock promoter (PCYC1-HSE ), we found a close match between the intensity of the bioluminescent signal and mRNA levels during both induction and decay. We demonstrated that the bioluminescence of yNluc fused to the C-terminus of a temperature-sensitive protein reports on its protein levels. In conclusion, yNluc and yNlucPEST are valuable new reporter proteins suitable for experiments with yeast using standard commercial substrate. © 2016 The Authors. Yeast published by John Wiley & Sons Ltd.


Assuntos
Regulação Enzimológica da Expressão Gênica/fisiologia , Regulação Fúngica da Expressão Gênica/fisiologia , Luciferases/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Animais , Crustáceos/enzimologia , Genes Reporter , Luciferases/classificação , Luciferases/genética , Medições Luminescentes , Nanotecnologia , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética
10.
Proc Natl Acad Sci U S A ; 110(15): 5975-80, 2013 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-23530227

RESUMO

Protein quality control systems protect cells against the accumulation of toxic misfolded proteins by promoting their selective degradation. Malfunctions of quality control systems are linked to aging and neurodegenerative disease. Folding of polypeptides is facilitated by the association of 70 kDa Heat shock protein (Hsp70) molecular chaperones. If folding cannot be achieved, Hsp70 interacts with ubiquitylation enzymes that promote the proteasomal degradation of the misfolded protein. However, the factors that direct Hsp70 substrates toward the degradation machinery have remained unknown. Here, we identify Fes1, an Hsp70 nucleotide exchange factor of hitherto unclear physiological function, as a cytosolic triaging factor that promotes proteasomal degradation of misfolded proteins. Fes1 selectively interacts with misfolded proteins bound by Hsp70 and triggers their release from the chaperone. In the absence of Fes1, misfolded proteins fail to undergo polyubiquitylation, aggregate, and induce a strong heat shock response. Our findings reveal that Hsp70 direct proteins toward either folding or degradation by using distinct nucleotide exchange factors.


Assuntos
Proteínas de Choque Térmico HSP110/metabolismo , Proteínas de Choque Térmico HSP70/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Dobramento de Proteína , Proteínas de Saccharomyces cerevisiae/metabolismo , Ubiquitina/metabolismo , Citosol/metabolismo , Espectrometria de Massas , Plasmídeos/metabolismo , Regiões Promotoras Genéticas , Complexo de Endopeptidases do Proteassoma/metabolismo , Desnaturação Proteica , Controle de Qualidade , Saccharomyces cerevisiae/metabolismo , Técnicas do Sistema de Duplo-Híbrido , Ubiquitina-Proteína Ligases/metabolismo , Ultracentrifugação
11.
Protein Expr Purif ; 98: 38-45, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24631626

RESUMO

Production of recombinant proteins is the starting point for biochemical and biophysical analyses and requires methodology to efficiently proceed from gene sequence to purified protein. While optimized strategies for the efficient cloning of single-gene fragments for bacterial expression is available, efficient multiple DNA fragment cloning still presents a challenge. To facilitate this step, we have developed an efficient cloning strategy based on yeast homologous recombination cloning (YHRC) into the new pET-based bacterial expression vector pSUMO-YHRC. The vector supports cloning for untagged expression as well as fusions to His6-SUMO or His6 tags. We demonstrate that YHRC from single PCR products of 6 independent genes into the vector results in virtually no background. Importantly, in a quantitative assay for functional expression we find that single-step YHRC of 7 DNA fragments can be performed with very high cloning efficiencies. The method and reagents described in this paper significantly simplifies the construction of expression plasmids from multiple DNA fragments, including complex gene fusions, chimeric genes and polycistronic constructs.


Assuntos
Clonagem Molecular/métodos , Vetores Genéticos/genética , Recombinação Homóloga , Plasmídeos/genética , Saccharomyces cerevisiae/genética , Escherichia coli/genética , Vetores Genéticos/metabolismo , Plasmídeos/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Saccharomyces cerevisiae/metabolismo
12.
Nat Commun ; 15(1): 315, 2024 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-38182580

RESUMO

The resilience of cellular proteostasis declines with age, which drives protein aggregation and compromises viability. The nucleus has emerged as a key quality control compartment that handles misfolded proteins produced by the cytosolic protein biosynthesis system. Here, we find that age-associated metabolic cues target the yeast protein disaggregase Hsp104 to the nucleus to maintain a functional nuclear proteome during quiescence. The switch to respiratory metabolism and the accompanying decrease in translation rates direct cytosolic Hsp104 to the nucleus to interact with latent translation initiation factor eIF2 and to suppress protein aggregation. Hindering Hsp104 from entering the nucleus in quiescent cells results in delayed re-entry into the cell cycle due to compromised resumption of protein synthesis. In sum, we report that cytosolic-nuclear partitioning of the Hsp104 disaggregase is a critical mechanism to protect the latent protein synthesis machinery during quiescence in yeast, ensuring the rapid restart of translation once nutrients are replenished.


Assuntos
Proteínas de Choque Térmico , Biossíntese de Proteínas , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Ciclo Celular , Divisão Celular , Citosol , Agregados Proteicos , Saccharomyces cerevisiae/metabolismo , Proteínas de Choque Térmico/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo
13.
Dev Cell ; 59(6): 759-775.e5, 2024 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-38354739

RESUMO

Lipid droplets (LDs) are fat storage organelles critical for energy and lipid metabolism. Upon nutrient exhaustion, cells consume LDs via gradual lipolysis or via lipophagy, the en bloc uptake of LDs into the vacuole. Here, we show that LDs dock to the vacuolar membrane via a contact site that is required for lipophagy in yeast. The LD-localized LDO proteins carry an intrinsically disordered region that directly binds vacuolar Vac8 to form vCLIP, the vacuolar-LD contact site. Nutrient limitation drives vCLIP formation, and its inactivation blocks lipophagy, resulting in impaired caloric restriction-induced longevity. We establish a functional link between lipophagy and microautophagy of the nucleus, both requiring Vac8 to form respective contact sites upon metabolic stress. In sum, we identify the tethering machinery of vCLIP and find that Vac8 provides a platform for multiple and competing contact sites associated with autophagy.


Assuntos
Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Saccharomyces cerevisiae/metabolismo , Gotículas Lipídicas/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Vacúolos/metabolismo , Metabolismo dos Lipídeos/fisiologia , Autofagia
14.
Nat Commun ; 15(1): 1382, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38360885

RESUMO

Cotranslational protein folding depends on general chaperones that engage highly diverse nascent chains at the ribosomes. Here we discover a dedicated ribosome-associated chaperone, Chp1, that rewires the cotranslational folding machinery to assist in the challenging biogenesis of abundantly expressed eukaryotic translation elongation factor 1A (eEF1A). Our results indicate that during eEF1A synthesis, Chp1 is recruited to the ribosome with the help of the nascent polypeptide-associated complex (NAC), where it safeguards eEF1A biogenesis. Aberrant eEF1A production in the absence of Chp1 triggers instant proteolysis, widespread protein aggregation, activation of Hsf1 stress transcription and compromises cellular fitness. The expression of pathogenic eEF1A2 variants linked to epileptic-dyskinetic encephalopathy is protected by Chp1. Thus, eEF1A is a difficult-to-fold protein that necessitates a biogenesis pathway starting with dedicated folding factor Chp1 at the ribosome to protect the eukaryotic cell from proteostasis collapse.


Assuntos
Proteínas de Ligação ao Cálcio , Chaperonas Moleculares , Fator 1 de Elongação de Peptídeos , Dobramento de Proteína , Ribossomos , Biossíntese de Proteínas , Proteostase , Ribossomos/genética , Ribossomos/metabolismo , Humanos , Proteínas de Ligação ao Cálcio/metabolismo , Chaperonas Moleculares/metabolismo , Fator 1 de Elongação de Peptídeos/metabolismo
15.
Cell Stress Chaperones ; 29(1): 21-33, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38320449

RESUMO

J-domain proteins (JDPs) are the largest family of chaperones in most organisms, but much of how they function within the network of other chaperones and protein quality control machineries is still an enigma. Here, we report on the latest findings related to JDP functions presented at a dedicated JDP workshop in Gdansk, Poland. The report does not include all (details) of what was shared and discussed at the meeting, because some of these original data have not yet been accepted for publication elsewhere or represented still preliminary observations at the time.


Assuntos
Proteínas de Choque Térmico HSP70 , Chaperonas Moleculares , Proteínas de Choque Térmico HSP70/metabolismo , Chaperonas Moleculares/metabolismo , Polônia , Proteínas de Choque Térmico HSP40/metabolismo
16.
Front Mol Biosci ; 10: 1155521, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37021114

RESUMO

While proteins populating their native conformations constitute the functional entities of cells, protein aggregates are traditionally associated with cellular dysfunction, stress and disease. During recent years, it has become clear that large aggregate-like protein condensates formed via liquid-liquid phase separation age into more solid aggregate-like particles that harbor misfolded proteins and are decorated by protein quality control factors. The constituent proteins of the condensates/aggregates are disentangled by protein disaggregation systems mainly based on Hsp70 and AAA ATPase Hsp100 chaperones prior to their handover to refolding and degradation systems. Here, we discuss the functional roles that condensate formation/aggregation and disaggregation play in protein quality control to maintain proteostasis and why it matters for understanding health and disease.

17.
Mol Biol Cell ; 34(10): ar101, 2023 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-37467033

RESUMO

Heat Shock Factor 1 (Hsf1) in yeast drives the basal transcription of key proteostasis factors and its activity is induced as part of the core heat shock response. Exploring Hsf1 specific functions has been challenging due to the essential nature of the HSF1 gene and the extensive overlap of target promoters with environmental stress response (ESR) transcription factors Msn2 and Msn4 (Msn2/4). In this study, we constructed a viable hsf1∆ strain by replacing the HSF1 open reading frame with genes that constitutively express Hsp40, Hsp70, and Hsp90 from Hsf1-independent promoters. Phenotypic analysis showed that the hsf1∆ strain grows slowly, is sensitive to heat as well as protein misfolding and accumulates protein aggregates. Transcriptome analysis revealed that the transcriptional response to protein misfolding induced by azetidine-2-carboxylic acid is fully dependent on Hsf1. In contrast, the hsf1∆ strain responded to heat shock through the ESR. Following HS, Hsf1 and Msn2/4 showed functional compensatory induction with stronger activation of the remaining stress pathway when the other branch was inactivated. Thus, we provide a long-overdue genetic test of the function of Hsf1 in yeast using the novel hsf1∆ construct. Our data highlight that the accumulation of misfolded proteins is uniquely sensed by Hsf1-Hsp70 chaperone titration inducing a highly selective transcriptional stress response.


Assuntos
Proteínas de Ligação a DNA , Proteínas de Saccharomyces cerevisiae , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Choque Térmico/genética , Proteínas de Choque Térmico/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Fatores de Transcrição de Choque Térmico/genética , Fatores de Transcrição de Choque Térmico/metabolismo , Proteínas de Choque Térmico HSP70/genética , Proteínas de Choque Térmico HSP70/metabolismo , Resposta ao Choque Térmico/genética
18.
J Biol Chem ; 285(16): 12445-53, 2010 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-20177057

RESUMO

Grp170 and Hsp110 proteins constitute two evolutionary distinct branches of the Hsp70 family that share the ability to function as nucleotide exchange factors (NEFs) for canonical Hsp70s. Although the NEF mechanism of the cytoplasmic Hsp110s is well understood, little is known regarding the mechanism used by Grp170s in the endoplasmic reticulum. In this study, we compare the yeast Grp170 Lhs1 with the yeast Hsp110 Sse1. We find that residues important for Sse1 NEF activity are conserved in Lhs1 and that mutations in these residues in Lhs1 compromise NEF activity. As previously reported for Sse1, Lhs1 requires ATP to trigger nucleotide exchange in its cognate Hsp70 partner Kar2. Using site-specific cross-linking, we show that the nucleotide-binding domain (NBD) of Lhs1 interacts with the NBD of Kar2 face to face, and that Lhs1 contacts the side of the Kar2 NBD via its protruding C-terminal alpha-helical domain. To directly address the mechanism of nucleotide exchange, we have compared the hydrogen-exchange characteristics of a yeast Hsp70 NBD (Ssa1) in complex with either Sse1 or Lhs1. We find that Lhs1 and Sse1 induce very similar changes in the conformational dynamics in the Hsp70. Thus, our findings demonstrate that despite some differences between Hsp110 and Grp170 proteins, they use a similar mechanism to trigger nucleotide exchange.


Assuntos
Glicoproteínas/metabolismo , Proteínas de Choque Térmico HSP110/metabolismo , Proteínas de Choque Térmico HSP70/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Adenosina Trifosfatases/química , Adenosina Trifosfatases/genética , Adenosina Trifosfatases/metabolismo , Sítios de Ligação/genética , Reagentes de Ligações Cruzadas , Citosol/metabolismo , Retículo Endoplasmático/metabolismo , Proteínas Fúngicas/química , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Glicoproteínas/química , Glicoproteínas/genética , Proteínas de Choque Térmico HSP110/química , Proteínas de Choque Térmico HSP110/genética , Proteínas de Choque Térmico HSP70/química , Proteínas de Choque Térmico HSP70/genética , Complexos Multiproteicos , Mutagênese Sítio-Dirigida , Conformação Proteica , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética
19.
J Cell Biol ; 173(5): 695-707, 2006 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-16735580

RESUMO

Stp1 and Stp2 are homologous transcription factors in yeast that are synthesized as latent cytoplasmic precursors with NH2-terminal regulatory domains. In response to extracellular amino acids, the plasma membrane-localized Ssy1-Ptr3-Ssy5 (SPS) sensor endoproteolytically processes Stp1 and Stp2, an event that releases the regulatory domains. The processed forms of Stp1 and Stp2 efficiently target to the nucleus and bind promoters of amino acid permease genes. In this study, we report that Asi1 is an integral component of the inner nuclear membrane that maintains the latent characteristics of unprocessed Stp1 and Stp2. In cells lacking Asi1, full-length forms of Stp1 and Stp2 constitutively induce SPS sensor-regulated genes. The regulatory domains of Stp1 and Stp2 contain a conserved motif that confers Asi1-mediated control when fused to an unrelated DNA-binding protein. Our results indicate that latent precursor forms of Stp1 and Stp2 inefficiently enter the nucleus; however, once there, Asi1 restricts them from binding SPS sensor-regulated promoters. These findings reveal an unanticipated role of inner nuclear membrane proteins in controlling gene expression.


Assuntos
Proteínas de Ligação a DNA/efeitos dos fármacos , Proteínas de Membrana/farmacologia , Membrana Nuclear/metabolismo , Proteínas Nucleares/metabolismo , Regiões Promotoras Genéticas/fisiologia , Proteínas de Ligação a RNA/efeitos dos fármacos , Proteínas de Saccharomyces cerevisiae/efeitos dos fármacos , Proteínas de Saccharomyces cerevisiae/farmacologia , Fatores de Transcrição/efeitos dos fármacos , Sequência de Aminoácidos , Proteínas de Transporte/metabolismo , Proteínas de Ligação a DNA/metabolismo , Regulação Fúngica da Expressão Gênica , Peptídeos e Proteínas de Sinalização Intracelular , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Dados de Sequência Molecular , Complexos Multiproteicos/metabolismo , Mutação , Proteínas Nucleares/efeitos dos fármacos , Proteínas de Ligação a RNA/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Fatores de Transcrição/metabolismo
20.
Proc Natl Acad Sci U S A ; 105(43): 16519-24, 2008 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-18948593

RESUMO

Hsp110 proteins are relatives of canonical Hsp70 chaperones and are expressed abundantly in the eukaryotic cytosol. Recently, it has become clear that Hsp110 proteins are essential nucleotide exchange factors (NEFs) for Hsp70 chaperones. Here, we report the architecture of the complex between the yeast Hsp110, Sse1, and its cognate Hsp70 partner, Ssa1, as revealed by hydrogen-deuterium exchange analysis and site-specific cross-linking. The two nucleotide-binding domains (NBDs) of Sse1 and Ssa1 are positioned to face each other and form extensive contacts between opposite lobes of their NBDs. A second contact with the periphery of the Ssa1 NBD lobe II is likely mediated via the protruding C-terminal alpha-helical subdomain of Sse1. To address the mechanism of catalyzed nucleotide exchange, we have compared the hydrogen exchange characteristics of the Ssa1 NBD in complex with either Sse1 or the yeast homologs of the NEFs HspBP1 and Bag-1. We find that Sse1 exploits a Bag-1-like mechanism to catalyze nucleotide release, which involves opening of the Ssa1 NBD by tilting lobe II. Thus, Hsp110 proteins use a unique binding mode to catalyze nucleotide release from Hsp70s by a functionally convergent mechanism.


Assuntos
Proteínas de Choque Térmico HSP110/química , Proteínas de Choque Térmico HSP110/metabolismo , Proteínas de Choque Térmico HSP70/química , Proteínas de Choque Térmico HSP70/metabolismo , Adenosina Trifosfatases/química , Adenosina Trifosfatases/metabolismo , Sítios de Ligação , Proteínas de Ligação a DNA , Medição da Troca de Deutério , Proteínas de Choque Térmico , Proteínas de Membrana Transportadoras , Proteínas de Transporte da Membrana Mitocondrial , Chaperonas Moleculares , Nucleotídeos/metabolismo , Domínios e Motivos de Interação entre Proteínas , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismo , Fatores de Transcrição
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA