Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Sci Rep ; 14(1): 605, 2024 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-38182609

RESUMO

Laser plasma-based accelerators provide an excellent source of collimated, bright, and adequately coherent betatron-type x-ray pulses with potential applications in science and industry. So far the laser plasma-based betatron radiation has been described within the concept of classical Liénard-Wiechert potentials incorporated in particle-in-cell simulations, a computing power-demanding approach, especially for the case of multi-petawatt lasers. In this work, we describe the laser plasma-based generation of betatron radiation at the most fundamental level of quantum mechanics. In our approach, photon emission from the relativistic electrons in the plasma bubble is described within a nonlinear quantum electrodynamics (QED) framework. The reported QED-based betatron radiation results are in excellent agreement with similar results using Liénard-Wiechert potentials, as well as in very good agreement with betatron radiation measurements, obtained with multi-10-TW lasers interacting with He and multielectron N[Formula: see text] gas targets. Furthermore, our QED approach results in a dramatic reduction of the computational runtime demands, making it a favorable tool for designing betatron radiation experiments, especially in multi-petawatt laser facilities.

2.
Sci Rep ; 13(1): 2918, 2023 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-36806668

RESUMO

The temporal rearrangement of the spectral components of an ultrafast and intense laser pulse, i.e., the chirp of the pulse, offers significant possibilities for controlling its interaction with matter and plasma. In the propagation of ultra-strong laser pulses within the self-induced plasma, laser pulse chirp can play a major role in the dynamics of wakefield and plasma bubble formation, as well as in the electron injection and related electron acceleration. Here, we experimentally demonstrate the control of the generation efficiency of a relativistic electron beam, with respect to maximum electron energy and current, by accurately varying the chirp value of a multi-10-TW laser pulse. We explicitly show that positively chirped laser pulses, i.e., pulses with instantaneous frequency increasing with time, accelerate electrons in the order of 100 MeV much more efficiently in comparison to unchirped or negatively chirped pulses. Corresponding Particle-In-Cell simulations strongly support the experimental results, depicting a smoother plasma bubble density distribution and electron injection conditions that favor the maximum acceleration of the electron beam, when positively chirped laser pulses are used. Our results, aside from extending the validity of similar studies reported for PW laser pulses, provide the ground for understanding the subtle dynamics of an efficient plasma electron accelerator driven by chirped laser pulses.

3.
Rev Sci Instrum ; 94(10)2023 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-37855698

RESUMO

Laser WakeField Acceleration (LWFA) is extensively used as a high-energy electron source, with electrons achieving energies up to the GeV level. The produced electron beam characteristics depend strongly on the gas density profile. When the gaseous target is a gas jet, the gas density profile is affected by parameters, such as the nozzle geometry, the gas used, and the backing pressure applied to the gas valve. An electron source based on the LWFA mechanism has recently been developed at the Institute of Plasma Physics and Lasers. To improve controllability over the electron source, we developed a set of 3D-printed nozzles suitable for creating different gas density profiles according to the experimental necessities. Here, we present a study of the design, manufacturing, evaluation, and performance of a 3D-printed nozzle intended for LWFA experiments.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA