Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Nucleic Acids Res ; 49(5): 2878-2893, 2021 03 18.
Artigo em Inglês | MEDLINE | ID: mdl-33621339

RESUMO

Long terminal repeat (LTR)-retrotransposons constitute a significant part of eukaryotic genomes and influence their function and evolution. Like other RNA viruses, LTR-retrotransposons efficiently utilize their RNA genome to interact with host cell machinery during replication. Here, we provide the first genome-wide RNA secondary structure model for a LTR-retrotransposon in living cells. Using SHAPE probing, we explore the secondary structure of the yeast Ty1 retrotransposon RNA genome in its native in vivo state and under defined in vitro conditions. Comparative analyses reveal the strong impact of the cellular environment on folding of Ty1 RNA. In vivo, Ty1 genome RNA is significantly less structured and more dynamic but retains specific well-structured regions harboring functional cis-acting sequences. Ribosomes participate in the unfolding and remodeling of Ty1 RNA, and inhibition of translation initiation stabilizes Ty1 RNA structure. Together, our findings support the dual role of Ty1 genomic RNA as a template for protein synthesis and reverse transcription. This study also contributes to understanding how a complex multifunctional RNA genome folds in vivo, and strengthens the need for studying RNA structure in its natural cellular context.


Assuntos
Genoma Viral , RNA Viral/química , Retroelementos , Pareamento de Bases , Dimerização , Conformação de Ácido Nucleico , Biossíntese de Proteínas , RNA de Transferência de Metionina/metabolismo , RNA Viral/metabolismo , Saccharomyces/virologia , Sequências Repetidas Terminais
2.
Int J Mol Sci ; 21(18)2020 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-32942713

RESUMO

RNAs adopt specific structures in order to perform their biological activities. The structure of RNA is an important layer of gene expression regulation, and can impact a plethora of cellular processes, starting with transcription, RNA processing, and translation, and ending with RNA turnover. The development of high-throughput technologies has enabled a deeper insight into the sophisticated interplay between the structure of the cellular transcriptome and the living cells environment. In this review, we present the current view on the RNA structure in vivo resulting from the most recent transcriptome-wide studies in different organisms, including mammalians, yeast, plants, and bacteria. We focus on the relationship between the mRNA structure and translation, mRNA stability and degradation, protein binding, and RNA posttranscriptional modifications.


Assuntos
Genoma/genética , RNA/genética , Animais , Regulação da Expressão Gênica/genética , Estudo de Associação Genômica Ampla/métodos , Humanos , Processamento Pós-Transcricional do RNA/genética , Transcriptoma/genética
3.
Int J Mol Sci ; 20(23)2019 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-31771126

RESUMO

The cannabinoid receptor type 1 (CB1R), a G protein-coupled receptor (GPCR), plays an essential role in the control of many physiological processes such as hunger, memory loss, gastrointestinal activity, catalepsy, fear, depression, and chronic pain. Therefore, it is an attractive target for drug discovery to manage pain, neurodegenerative disorders, obesity, and substance abuse. However, the psychoactive adverse effects, generated by CB1R activation in the brain, limit the use of the orthosteric CB1R ligands as drugs. The discovery of CB1R allosteric modulators during the last decade provided new tools to target the CB1R. Moreover, application of the site-directed mutagenesis in combination with advanced physical methods, especially X-ray crystallography and computational modeling, has opened new horizons for understanding the complexity of the structure, function, and activity of cannabinoid receptors. In this paper, we present the latest advances in research on the CB1R, its allosteric modulation and allosteric ligands, and their translational potential. We focused on structural essentials of the cannabinoid 1 receptor- ligand (drug) interactions, as well as modes of CB1R signaling regulation.


Assuntos
Agonistas de Receptores de Canabinoides/química , Receptor CB1 de Canabinoide , Regulação Alostérica , Animais , Agonistas de Receptores de Canabinoides/uso terapêutico , Cristalografia por Raios X , Humanos , Mutagênese Sítio-Dirigida , Doenças Neurodegenerativas/tratamento farmacológico , Doenças Neurodegenerativas/genética , Doenças Neurodegenerativas/metabolismo , Dor/tratamento farmacológico , Dor/genética , Dor/metabolismo , Receptor CB1 de Canabinoide/química , Receptor CB1 de Canabinoide/genética , Receptor CB1 de Canabinoide/metabolismo , Relação Estrutura-Atividade , Transtornos Relacionados ao Uso de Substâncias/tratamento farmacológico , Transtornos Relacionados ao Uso de Substâncias/genética , Transtornos Relacionados ao Uso de Substâncias/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA