Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Appl Microbiol Biotechnol ; 101(14): 5645-5652, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28466111

RESUMO

Brain-derived neurotrophic factor (BDNF) is a member of the neurotrophin family critical for neuronal cell survival and differentiation, with therapeutic potential for the treatment of neurological disorders and spinal cord injuries. The production of recombinant, bioactive BDNF is not practical in most traditional microbial expression systems because of the inability of the host to correctly form the characteristic cystine-knot fold of BDNF. Here, we investigated Brevibacillus choshinensis as a suitable expression host for bioactive BDNF expression, evaluating the effects of medium type (2SY and TM), temperature (25 and 30 °C), and culture time (48-120 h). Maximal BDNF bioactivity (per unit mass) was observed in cultures grown in 2SY medium at extended times (96 h at 30 °C or >72 h at 25 °C), with resulting bioactivity comparable to that of a commercially available BDNF. For cultures grown in 2SY medium at 25 °C for 72 h, the condition that led to the greatest quantity of biologically active protein in the shortest culture time, we recovered 264 µg/L of BDNF. As with other microbial expression systems, BDNF aggregates did form in all culture conditions, indicating that while we were able to recover biologically active BDNF, further optimization of the expression system could yield still greater quantities of bioactive protein. This study provides confirmation that B. choshinensis is capable of producing biologically active BDNF and that further optimization of culture conditions could prove valuable in increasing BDNF yields.


Assuntos
Fator Neurotrófico Derivado do Encéfalo/biossíntese , Fator Neurotrófico Derivado do Encéfalo/farmacologia , Brevibacillus/metabolismo , Animais , Fator Neurotrófico Derivado do Encéfalo/genética , Fator Neurotrófico Derivado do Encéfalo/isolamento & purificação , Brevibacillus/genética , Proliferação de Células/efeitos dos fármacos , Meios de Cultura/química , Cistina/química , Camundongos , Células NIH 3T3 , Neurônios/química , Neurônios/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/isolamento & purificação , Proteínas Recombinantes/metabolismo , Temperatura
2.
Methods Mol Biol ; 1974: 41-56, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31098994

RESUMO

In RNA interference (RNAi), silencing is achieved through the interaction of double-stranded small interfering RNAs (siRNAs) with essential RNAi pathway proteins, including Argonaute 2 (Ago2). Based on these interactions, one strand of the siRNA is loaded into Ago2 forming the active RNA-induced silencing complex (RISC). Optimal siRNAs maximize RISC activity against the intended target and minimize off-target silencing. To achieve the desired activity and specificity, selection of the appropriate siRNA strand for loading into Ago2 is essential. Here, we provide a protocol to quantify the relative loading of individual siRNA strands into Ago2, one factor in determining the capacity of a siRNA to achieve silencing activity and target specificity.


Assuntos
Proteínas Argonautas/genética , Neoplasias/genética , Interferência de RNA , RNA Interferente Pequeno/genética , Carboxipeptidases/genética , Células HeLa , Humanos , Neoplasias/terapia , RNA de Cadeia Dupla/genética , Ribonuclease III/genética
3.
Nucleic Acid Ther ; 26(5): 309-317, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27399870

RESUMO

Efficient short interfering RNA (siRNA)-mediated gene silencing requires selection of a sequence that is complementary to the intended target and possesses sequence and structural features that encourage favorable functional interactions with the RNA interference (RNAi) pathway proteins. In this study, we investigated how terminal sequence and structural characteristics of siRNAs contribute to siRNA strand loading and silencing activity and how these characteristics ultimately result in a functionally asymmetric duplex in cultured HeLa cells. Our results reiterate that the most important characteristic in determining siRNA activity is the 5' terminal nucleotide identity. Our findings further suggest that siRNA loading is controlled principally by the hybridization stability of the 5' terminus (Nucleotides: 1-2) of each siRNA strand, independent of the opposing terminus. Postloading, RNA-induced silencing complex (RISC)-specific activity was found to be improved by lower hybridization stability in the 5' terminus (Nucleotides: 3-4) of the loaded siRNA strand and greater hybridization stability toward the 3' terminus (Nucleotides: 17-18). Concomitantly, specific recognition of the 5' terminal nucleotide sequence by human Argonaute 2 (Ago2) improves RISC half-life. These findings indicate that careful selection of siRNA sequences can maximize both the loading and the specific activity of the intended guide strand.


Assuntos
Proteínas Argonautas/genética , Interferência de RNA , RNA Mensageiro/genética , RNA Interferente Pequeno/genética , Complexo de Inativação Induzido por RNA/genética , Proteínas Argonautas/metabolismo , Meia-Vida , Células HeLa , Humanos , Cinética , Hibridização de Ácido Nucleico , Estabilidade de RNA , RNA Mensageiro/antagonistas & inibidores , RNA Mensageiro/metabolismo , RNA Interferente Pequeno/metabolismo , Complexo de Inativação Induzido por RNA/metabolismo , Relação Estrutura-Atividade , Termodinâmica
4.
Acta Biomater ; 18: 128-31, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25712385

RESUMO

Agarose nerve guidance scaffolds (NGS) seeded with cells expressing brain derived neurotrophic factor (BDNF) have demonstrated robust nerve regeneration in the rat central nervous system. The purpose of this work was to explore whether agarose NGS coated with hydrogen-bonded layer-by-layer (HLbL) could provide an acellular method of delivering prolonged and consistent dosages of active BDNF. Our results show that HLbL-coated agarose NGS could release BDNF over 10days in consistent dosages averaging 80.5±12.5(SD)ng/mL. Moreover, the BDNF released from HLbL was confirmed active by in vitro cell proliferation assays. To our knowledge, this is the first report demonstrating that HLbL assembled onto a hydrogel can provide consistent, prolonged release of active BDNF in clinically relevant dosages.


Assuntos
Fator Neurotrófico Derivado do Encéfalo/metabolismo , Materiais Revestidos Biocompatíveis/farmacologia , Regeneração Tecidual Guiada , Regeneração Nervosa/efeitos dos fármacos , Sefarose/química , Alicerces Teciduais/química , Animais , Camundongos , Células NIH 3T3 , Ratos , Receptor trkB/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA