Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros

Base de dados
Tipo de documento
Assunto da revista
Intervalo de ano de publicação
1.
Opt Lett ; 47(18): 4620-4623, 2022 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-36107047

RESUMO

We employ the Su-Schrieffer-Heeger model in elastic polymer waveguide arrays to design and realize traveling topologically protected modes. The observed delocalization of the optical field for superluminal defect velocities agrees well with theoretical descriptions. We apply mechanical strain to modulate the lattices' coupling coefficient. This work demonstrates a novel, to the best of our knowledge, platform for rapid prototyping of topological photonic devices and establishes strain-tuning as a viable design parameter for topological waveguide arrays.

2.
Chaos ; 32(7): 073133, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35907713

RESUMO

Classifying images often requires manual identification of qualitative features. Machine learning approaches including convolutional neural networks can achieve accuracy comparable to human classifiers but require extensive data and computational resources to train. We show how a topological data analysis technique, persistent homology, can be used to rapidly and reliably identify qualitative features in experimental image data. The identified features can be used as inputs to simple supervised machine learning models, such as logistic regression models, which are easier to train. As an example, we consider the identification of dark solitons using a dataset of 6257 labeled atomic Bose-Einstein condensate density images.


Assuntos
Aprendizado de Máquina , Redes Neurais de Computação , Humanos
3.
Rep Prog Phys ; 80(1): 016401, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27811404

RESUMO

In this review we discuss the works in the area of quantum simulation and many-body physics with light, from the early proposals on equilibrium models to the more recent works in driven dissipative platforms. We start by describing the founding works on Jaynes-Cummings-Hubbard model and the corresponding photon-blockade induced Mott transitions and continue by discussing the proposals to simulate effective spin models and fractional quantum Hall states in coupled resonator arrays (CRAs). We also analyse the recent efforts to study out-of-equilibrium many-body effects using driven CRAs, including the predictions for photon fermionisation and crystallisation in driven rings of CRAs as well as other dynamical and transient phenomena. We try to summarise some of the relatively recent results predicting exotic phases such as super-solidity and Majorana like modes and then shift our attention to developments involving 1D nonlinear slow light setups. There the simulation of strongly correlated phases characterising Tonks-Girardeau gases, Luttinger liquids, and interacting relativistic fermionic models is described. We review the major theory results and also briefly outline recent developments in ongoing experimental efforts involving different platforms in circuit QED, photonic crystals and nanophotonic fibres interfaced with cold atoms.

4.
Phys Rev Lett ; 117(21): 213603, 2016 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-27911559

RESUMO

We show how to implement topological or Thouless pumping of interacting photons in one-dimensional nonlinear resonator arrays by simply modulating the frequency of the resonators periodically in space and time. The interplay between the interactions and the adiabatic modulations enables robust transport of Fock states with few photons per site. We analyze the transport mechanism via an effective analytic model and study its topological properties and its protection to noise. We conclude by a detailed study of an implementation with existing circuit-QED architectures.

5.
Phys Rev Lett ; 110(10): 100502, 2013 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-23521239

RESUMO

One of the most well known relativistic field theory models is the Thirring model. Its realization can demonstrate the famous prediction for the renormalization of mass due to interactions. However, experimental verification of the latter requires complex accelerator experiments whereas analytical solutions of the model can be extremely cumbersome to obtain. In this work, following Feynman's original proposal, we propose an alternative quantum system as a simulator of the Thirring model dynamics. Here, the relativistic particles are mimicked, counterintuitively, by polarized photons in a quantum nonlinear medium. We show that the entire set of regimes of the Thirring model--bosonic or fermionic, and massless or massive--can be faithfully reproduced using coherent light trapping techniques. The correlation functions of the model can be extracted by simple probing of the coherence functions of the output light using standard optical techniques.

6.
Phys Rev E ; 107(4-1): 044204, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37198836

RESUMO

Topological data analysis is a powerful framework for extracting useful topological information from complex data sets. Recent work has shown its application for the dynamical analysis of classical dissipative systems through a topology-preserving embedding method that allows reconstructing dynamical attractors, the topologies of which can be used to identify chaotic behavior. Open quantum systems can similarly exhibit nontrivial dynamics, but the existing toolkit for classification and quantification are still limited, particularly for experimental applications. In this paper, we present a topological pipeline for characterizing quantum dynamics, which draws inspiration from the classical approach by using single quantum trajectory unravelings of the master equation to construct analog quantum attractors and extract their topology using persistent homology. We apply the method to a periodically modulated Kerr-nonlinear cavity to discriminate parameter regimes of regular and chaotic phases using limited measurements of the system.

7.
Phys Rev Lett ; 106(15): 153601, 2011 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-21568557

RESUMO

In this work we show that light-matter excitations (polaritons) generated inside a hollow-core one-dimensional fiber filled with two types of atoms, can exhibit Luttinger liquid behavior. We first explain how to prepare and drive this quantum-optical system to a strongly interacting regime, described by a bosonic two-component Lieb-Liniger model. Utilizing the connection between strongly interacting bosonic and fermionic systems, we then show how spin-charge separation could be observed by probing the correlations in the polaritons. This is performed by first mapping the polaritons to propagating photon pulses and then measuring the effective photonic spin and charge densities and velocities by analyzing the correlations in the emitted photon spectrum. The necessary regime of interactions is achievable with current quantum-optical technology.

8.
Sci Rep ; 5: 8438, 2015 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-25708778

RESUMO

We propose an optical simulation of dissipation-induced correlations in one-dimensional (1D) interacting bosonic systems, using a two-dimensional (2D) array of linear photonic waveguides and only classical light. We show that for the case of two bosons in a 1D lattice, one can simulate on-site two-body dissipative dynamics using a linear 2D waveguide array with lossy diagonal waveguides. The intensity distribution of the propagating light directly maps out the wave function, allowing one to observe the dissipation-induced correlations with simple measurements. Beyond the on-site model, we also show that a generalised model containing nearest-neighbour dissipative interaction can be engineered and probed in the proposed set-up.

9.
Sci Rep ; 4: 6110, 2014 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-25130953

RESUMO

The Jackiw-Rebbi model describes a one-dimensional Dirac field coupled to a soliton field and can be equivalently thought of as a model describing a Dirac field with a spatially dependent mass term. Neglecting the dynamics of the soliton field, a kink in the background soliton profile yields a topologically protected zero-energy mode for the field, which in turn leads to charge fractionalisation. We show here that the model, in the first quantised form, can be realised in a driven slow-light setup, where photons mimic the Dirac field and the soliton field can be implemented-and tuned-by adjusting optical parameters such as the atom-photon detuning. Furthermore, we discuss how the existence of the zero-mode and its topological stability can be probed naturally by studying the transmission spectrum. We conclude by analysing the robustness of our approach against possible experimental errors in engineering the Jackiw-Rebbi Hamiltonian in this optical setup.

10.
Phys Rev Lett ; 101(24): 246809, 2008 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-19113651

RESUMO

We propose a scheme to realize the fractional quantum Hall system with atoms confined in a two-dimensional array of coupled cavities. Our scheme is based on simple optical manipulation of atomic internal states and intercavity hopping of virtually excited photons. It is shown that, as well as the fractional quantum Hall system, any system of hard-core bosons on a lattice in the presence of an arbitrary Abelian vector potential can be simulated solely by controlling the phases of constantly applied lasers. The scheme, for the first time, exploits the core advantage of coupled cavity simulations, namely, the individual addressability of the components, and also brings the gauge potential into such simulations as well as the simple optical creation of particles.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA