Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Glia ; 71(10): 2323-2342, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37269227

RESUMO

Ceruloplasmin (Cp) is a ferroxidase enzyme that is essential for cell iron efflux. The absence of this protein in humans and rodents produces progressive neurodegeneration with brain iron accumulation. Astrocytes express high levels of Cp and iron efflux from these cells has been shown to be central for oligodendrocyte maturation and myelination. To explore the role of astrocytic Cp in brain development and aging we generated a specific conditional KO mouse for Cp in astrocytes (Cp cKO). Deletion of Cp in astrocytes during the first postnatal week induced hypomyelination and a significant delay in oligodendrocyte maturation. This abnormal myelin synthesis was exacerbated throughout the first two postnatal months and accompanied by a reduction in oligodendrocyte iron content, as well as an increase in brain oxidative stress. In contrast to young animals, deletion of astrocytic Cp at 8 months of age engendered iron accumulation in several brain areas and neurodegeneration in cortical regions. Aged Cp cKO mice also showed myelin loss and oxidative stress in oligodendrocytes and neurons, and at 18 months of age, developed abnormal behavioral profiles, including deficits in locomotion and short-term memory. In summary, our results demonstrate that iron efflux-mediated by astrocytic Cp-is essential for both early oligodendrocyte maturation and myelin integrity in the mature brain. Additionally, our data suggest that astrocytic Cp activity is central to prevent iron accumulation and iron-induced oxidative stress in the aging CNS.


Assuntos
Astrócitos , Ceruloplasmina , Humanos , Camundongos , Animais , Idoso , Ceruloplasmina/genética , Ceruloplasmina/metabolismo , Astrócitos/metabolismo , Bainha de Mielina/metabolismo , Camundongos Knockout , Encéfalo/metabolismo , Ferro/metabolismo , Oligodendroglia/metabolismo
2.
J Neuroinflammation ; 20(1): 263, 2023 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-37964385

RESUMO

The experimental autoimmune encephalomyelitis (EAE) model of multiple sclerosis was used in combination with a Cav1.2 conditional knock-out mouse (Cav1.2KO) to study the role of astrocytic voltage-gated Ca++ channels in autoimmune CNS inflammation and demyelination. Cav1.2 channels were specifically ablated in Glast-1-positive astrocytes by means of the Cre-lox system before EAE induction. After immunization, motor activity was assessed daily, and a clinical score was given based on the severity of EAE symptoms. Cav1.2 deletion in astrocytes significantly reduced the severity of the disease. While no changes were found in the day of onset and peak disease severity, EAE mean clinical score was lower in Cav1.2KO animals during the chronic phase of the disease. This corresponded to better performance on the rotarod and increased motor activity in Cav1.2KO mice. Furthermore, decreased numbers of reactive astrocytes, activated microglia, and infiltrating lymphocytes were found in the lumbar section of the spinal cord of Cav1.2KO mice 40 days after immunization. The degree of myelin protein loss and size of demyelinated lesions were also attenuated in Cav1.2KO spinal cords. Similar results were found in EAE animals treated with nimodipine, a Cav1.2 Ca++ channel inhibitor with high affinity to the CNS. Mice injected with nimodipine during the acute and chronic phases of the disease exhibited lower numbers of reactive astrocytes, activated microglial, and infiltrating immune cells, as well as fewer demyelinated lesions in the spinal cord. These changes were correlated with improved clinical scores and motor performance. In summary, these data suggest that antagonizing Cav1.2 channels in astrocytes during EAE alleviates neuroinflammation and protects the spinal cord from autoimmune demyelination.


Assuntos
Encefalomielite Autoimune Experimental , Esclerose Múltipla , Camundongos , Animais , Esclerose Múltipla/patologia , Nimodipina/metabolismo , Doenças Neuroinflamatórias , Astrócitos/metabolismo , Modelos Animais de Doenças , Encefalomielite Autoimune Experimental/patologia , Canais de Cálcio/genética , Canais de Cálcio/metabolismo , Medula Espinal/patologia , Camundongos Knockout , Camundongos Endogâmicos C57BL
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA