Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 50
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Hum Mol Genet ; 2024 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-38850567

RESUMO

Alterations in Dp71 expression, the most ubiquitous dystrophin isoform, have been associated with patient survival across tumours. Intriguingly, in certain malignancies, Dp71 acts as a tumour suppressor, while manifesting oncogenic properties in others. This diversity could be explained by the expression of two Dp71 splice variants encoding proteins with distinct C-termini, each with specific properties. Expression of these variants has impeded the exploration of their unique roles. Using CRISPR/Cas9, we ablated the Dp71f variant with the alternative C-terminus in a sarcoma cell line not expressing the canonical C-terminal variant, and conducted molecular (RNAseq) and functional characterisation of the knockout cells. Dp71f ablation induced major transcriptomic alterations, particularly affecting the expression of genes involved in calcium signalling and ECM-receptor interaction pathways. The genome-scale metabolic analysis identified significant downregulation of glucose transport via membrane vesicle reaction (GLCter) and downregulated glycolysis/gluconeogenesis pathway. Functionally, these molecular changes corresponded with, increased calcium responses, cell adhesion, proliferation, survival under serum starvation and chemotherapeutic resistance. Knockout cells showed reduced GLUT1 protein expression, survival without attachment and their migration and invasion in vitro and in vivo were unaltered, despite increased matrix metalloproteinases release. Our findings emphasise the importance of alternative splicing of dystrophin transcripts and underscore the role of the Dp71f variant, which appears to govern distinct cellular processes frequently dysregulated in tumour cells. The loss of this regulatory mechanism promotes sarcoma cell survival and treatment resistance. Thus, Dp71f is a target for future investigations exploring the intricate functions of specific DMD transcripts in physiology and across malignancies.

2.
PLoS Comput Biol ; 19(7): e1011224, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37410704

RESUMO

Data are the most important elements of bioinformatics: Computational analysis of bioinformatics data, in fact, can help researchers infer new knowledge about biology, chemistry, biophysics, and sometimes even medicine, influencing treatments and therapies for patients. Bioinformatics and high-throughput biological data coming from different sources can even be more helpful, because each of these different data chunks can provide alternative, complementary information about a specific biological phenomenon, similar to multiple photos of the same subject taken from different angles. In this context, the integration of bioinformatics and high-throughput biological data gets a pivotal role in running a successful bioinformatics study. In the last decades, data originating from proteomics, metabolomics, metagenomics, phenomics, transcriptomics, and epigenomics have been labelled -omics data, as a unique name to refer to them, and the integration of these omics data has gained importance in all biological areas. Even if this omics data integration is useful and relevant, due to its heterogeneity, it is not uncommon to make mistakes during the integration phases. We therefore decided to present these ten quick tips to perform an omics data integration correctly, avoiding common mistakes we experienced or noticed in published studies in the past. Even if we designed our ten guidelines for beginners, by using a simple language that (we hope) can be understood by anyone, we believe our ten recommendations should be taken into account by all the bioinformaticians performing omics data integration, including experts.


Assuntos
Genômica , Multiômica , Humanos , Proteômica , Biologia Computacional , Metabolômica
3.
Bioinformatics ; 38(2): 487-493, 2022 01 03.
Artigo em Inglês | MEDLINE | ID: mdl-34499112

RESUMO

MOTIVATION: Gene regulation is responsible for controlling numerous physiological functions and dynamically responding to environmental fluctuations. Reconstructing the human network of gene regulatory interactions is thus paramount to understanding the cell functional organization across cell types, as well as to elucidating pathogenic processes and identifying molecular drug targets. Although significant effort has been devoted towards this direction, existing computational methods mainly rely on gene expression levels, possibly ignoring the information conveyed by mechanistic biochemical knowledge. Moreover, except for a few recent attempts, most of the existing approaches only consider the information of the organism under analysis, without exploiting the information of related model organisms. RESULTS: We propose a novel method for the reconstruction of the human gene regulatory network, based on a transfer learning strategy that synergically exploits information from human and mouse, conveyed by gene-related metabolic features generated in silico from gene expression data. Specifically, we learn a predictive model from metabolic activity inferred via tissue-specific metabolic modelling of artificial gene knockouts. Our experiments show that the combination of our transfer learning approach with the constructed metabolic features provides a significant advantage in terms of reconstruction accuracy, as well as additional clues on the contribution of each constructed metabolic feature. AVAILABILITY AND IMPLEMENTATION: The method, the datasets and all the results obtained in this study are available at: https://doi.org/10.6084/m9.figshare.c.5237687. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Assuntos
Biologia Computacional , Redes Reguladoras de Genes , Humanos , Animais , Camundongos , Biologia Computacional/métodos , Regulação da Expressão Gênica , Genoma , Aprendizado de Máquina
4.
Basic Res Cardiol ; 118(1): 16, 2023 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-37140699

RESUMO

The number of "omics" approaches is continuously growing. Among others, epigenetics has appeared as an attractive area of investigation by the cardiovascular research community, notably considering its association with disease development. Complex diseases such as cardiovascular diseases have to be tackled using methods integrating different omics levels, so called "multi-omics" approaches. These approaches combine and co-analyze different levels of disease regulation. In this review, we present and discuss the role of epigenetic mechanisms in regulating gene expression and provide an integrated view of how these mechanisms are interlinked and regulate the development of cardiac disease, with a particular attention to heart failure. We focus on DNA, histone, and RNA modifications, and discuss the current methods and tools used for data integration and analysis. Enhancing the knowledge of these regulatory mechanisms may lead to novel therapeutic approaches and biomarkers for precision healthcare and improved clinical outcomes.


Assuntos
Doenças Cardiovasculares , Insuficiência Cardíaca , Humanos , Metilação de DNA , Epigênese Genética , Insuficiência Cardíaca/genética , Doenças Cardiovasculares/genética , Coração
5.
Metab Eng ; 76: 120-132, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36720400

RESUMO

Multi-strain probiotics are widely regarded as effective products for improving gut microbiota stability and host health, providing advantages over single-strain probiotics. However, in general, it is unclear to what extent different strains would cooperate or compete for resources, and how the establishment of a common biofilm microenvironment could influence their interactions. In this work, we develop an integrative experimental and computational approach to comprehensively assess the metabolic functionality and interactions of probiotics across growth conditions. Our approach combines co-culture assays with genome-scale modelling of metabolism and multivariate data analysis, thus exploiting complementary data- and knowledge-driven systems biology techniques. To show the advantages of the proposed approach, we apply it to the study of the interactions between two widely used probiotic strains of Lactobacillus reuteri and Saccharomyces boulardii, characterising their production potential for compounds that can be beneficial to human health. Our results show that these strains can establish a mixed cooperative-antagonistic interaction best explained by competition for shared resources, with an increased individual exchange but an often decreased net production of amino acids and short-chain fatty acids. Overall, our work provides a strategy that can be used to explore microbial metabolic fingerprints of biotechnological interest, capable of capturing multifaceted equilibria even in simple microbial consortia.


Assuntos
Microbioma Gastrointestinal , Probióticos , Humanos , Probióticos/metabolismo , Saccharomyces cerevisiae/metabolismo , Biofilmes , Técnicas de Cocultura
6.
BMC Cancer ; 23(1): 174, 2023 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-36809974

RESUMO

BACKGROUND: Gliomas are the most common brain tumours with the high-grade glioblastoma representing the most aggressive and lethal form. Currently, there is a lack of specific glioma biomarkers that would aid tumour subtyping and minimally invasive early diagnosis. Aberrant glycosylation is an important post-translational modification in cancer and is implicated in glioma progression. Raman spectroscopy (RS), a vibrational spectroscopic label-free technique, has already shown promise in cancer diagnostics. METHODS: RS was combined with machine learning to discriminate glioma grades. Raman spectral signatures of glycosylation patterns were used in serum samples and fixed tissue biopsy samples, as well as in single cells and spheroids. RESULTS: Glioma grades in fixed tissue patient samples and serum were discriminated with high accuracy. Discrimination between higher malignant glioma grades (III and IV) was achieved with high accuracy in tissue, serum, and cellular models using single cells and spheroids. Biomolecular changes were assigned to alterations in glycosylation corroborated by analysing glycan standards and other changes such as carotenoid antioxidant content. CONCLUSION: RS combined with machine learning could pave the way for more objective and less invasive grading of glioma patients, serving as a useful tool to facilitate glioma diagnosis and delineate biomolecular glioma progression changes.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Glioma , Humanos , Análise Espectral Raman/métodos , Glicosilação , Glioma/patologia , Neoplasias Encefálicas/patologia , Glioblastoma/patologia , Gradação de Tumores
7.
Proc Natl Acad Sci U S A ; 117(31): 18869-18879, 2020 08 04.
Artigo em Inglês | MEDLINE | ID: mdl-32675233

RESUMO

Metabolic modeling and machine learning are key components in the emerging next generation of systems and synthetic biology tools, targeting the genotype-phenotype-environment relationship. Rather than being used in isolation, it is becoming clear that their value is maximized when they are combined. However, the potential of integrating these two frameworks for omic data augmentation and integration is largely unexplored. We propose, rigorously assess, and compare machine-learning-based data integration techniques, combining gene expression profiles with computationally generated metabolic flux data to predict yeast cell growth. To this end, we create strain-specific metabolic models for 1,143 Saccharomyces cerevisiae mutants and we test 27 machine-learning methods, incorporating state-of-the-art feature selection and multiview learning approaches. We propose a multiview neural network using fluxomic and transcriptomic data, showing that the former increases the predictive accuracy of the latter and reveals functional patterns that are not directly deducible from gene expression alone. We test the proposed neural network on a further 86 strains generated in a different experiment, therefore verifying its robustness to an additional independent dataset. Finally, we show that introducing mechanistic flux features improves the predictions also for knockout strains whose genes were not modeled in the metabolic reconstruction. Our results thus demonstrate that fusing experimental cues with in silico models, based on known biochemistry, can contribute with disjoint information toward biologically informed and interpretable machine learning. Overall, this study provides tools for understanding and manipulating complex phenotypes, increasing both the prediction accuracy and the extent of discernible mechanistic biological insights.


Assuntos
Aprendizado de Máquina , Análise do Fluxo Metabólico/métodos , Saccharomyces cerevisiae , Biologia de Sistemas/métodos , Modelos Biológicos , Saccharomyces cerevisiae/citologia , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Transcriptoma
8.
J Cell Biochem ; 123(5): 964-986, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35342986

RESUMO

The continuous spread and evolution of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), and the rapid surge in infection cases in the coronavirus disease 2019 (COVID-19) evoke a dire need for effective therapeutics. In this study, we explored the inhibitory potential of a library of 605 phytocompounds, selected from Indian medicinal plants with reported antiviral and anti-inflammatory activities, against the receptor-binding domain of spike proteins of the SARS-CoV-2 wild-type and the variants of concern, including variants B.1.1.7 (Alpha), B.1.351 (Beta), P.1 (Gamma), B.1.617.2 (Delta), and B.1.1.529 (Omicron). Our approach was based on extensive molecular docking, assessment of drug-likeness, and robust molecular dynamics simulations. We also identified promising inhibitory candidates against the host (human) proteins associated with SARS-CoV-2 spike activation and attachment, namely, ACE2 receptor, proteases TMPRSS2 and CTSL, and the endocytic regulator AAK1. In addition, we screened promising inhibitory compounds against the human proinflammatory cytokines- IL-6, IL-1ß, TNF-α, and IFN-γ, that are associated with the adverse cytokine storm in COVID-19 patients. Our analysis returned an encouraging list of promising inhibitory candidates that includes: abietatriene against the spike proteins of the SARS-CoV-2 wild-type and the variants of concern; taraxerol against the human ACE2, CTSL and TNF-α; ß-amyrin against the human TMPRSS2; cynaroside against the human AAK1 and IL-1ß; and friedelin against the human IL-6 and IFN-γ. Our findings provide substantial evidence for the inhibitory potential of these compounds and encourage further in vitro and in vivo studies to validate their use as safe and effective therapeutics against COVID-19.


Assuntos
Tratamento Farmacológico da COVID-19 , SARS-CoV-2 , Enzima de Conversão de Angiotensina 2/genética , Síndrome da Liberação de Citocina , Humanos , Interleucina-6 , Simulação de Acoplamento Molecular , Glicoproteína da Espícula de Coronavírus/genética , Glicoproteína da Espícula de Coronavírus/metabolismo , Fator de Necrose Tumoral alfa
9.
Bioinformatics ; 37(20): 3546-3552, 2021 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-33974036

RESUMO

MOTIVATION: High-throughput biological data, thanks to technological advances, have become cheaper to collect, leading to the availability of vast amounts of omic data of different types. In parallel, the in silico reconstruction and modeling of metabolic systems is now acknowledged as a key tool to complement experimental data on a large scale. The integration of these model- and data-driven information is therefore emerging as a new challenge in systems biology, with no clear guidance on how to better take advantage of the inherent multisource and multiomic nature of these data types while preserving mechanistic interpretation. RESULTS: Here, we investigate different regularization techniques for high-dimensional data derived from the integration of gene expression profiles with metabolic flux data, extracted from strain-specific metabolic models, to improve cellular growth rate predictions. To this end, we propose ad-hoc extensions of previous regularization frameworks including group, view-specific and principal component regularization and experimentally compare them using data from 1143 Saccharomyces cerevisiae strains. We observe a divergence between methods in terms of regression accuracy and integration effectiveness based on the type of regularization employed. In multiomic regression tasks, when learning from experimental and model-generated omic data, our results demonstrate the competitiveness and ease of interpretation of multimodal regularized linear models compared to data-hungry methods based on neural networks. AVAILABILITY AND IMPLEMENTATION: All data, models and code produced in this work are available on GitHub at https://github.com/Angione-Lab/HybridGroupIPFLasso_pc2Lasso. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.

10.
Emerg Themes Epidemiol ; 18(1): 10, 2021 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-34330302

RESUMO

Today's most troublesome population health challenges are often driven by social and environmental determinants, which are difficult to model using traditional epidemiological methods. We agree with those who have argued for the wider adoption of agent-based modelling (ABM) in taking on these challenges. However, while ABM has been used occasionally in population health, we argue that for ABM to be most effective in the field it should be used as a means for answering questions normally inaccessible to the traditional epidemiological toolkit. In an effort to clearly illustrate the utility of ABM for population health research, and to clear up persistent misunderstandings regarding the method's conceptual underpinnings, we offer a detailed presentation of the core concepts of complex systems theory, and summarise why simulations are essential to the study of complex systems. We then examine the current state of the art in ABM for population health, and propose they are well-suited for the study of the 'wicked' problems in population health, and could make significant contributions to theory and intervention development in these areas.

11.
Brief Bioinform ; 19(6): 1218-1235, 2018 11 27.
Artigo em Inglês | MEDLINE | ID: mdl-28575143

RESUMO

Metabolic modelling has entered a mature phase with dozens of methods and software implementations available to the practitioner and the theoretician. It is not easy for a modeller to be able to see the wood (or the forest) for the trees. Driven by this analogy, we here present a 'forest' of principal methods used for constraint-based modelling in systems biology. This provides a tree-based view of methods available to prospective modellers, also available in interactive version at http://modellingmetabolism.net, where it will be kept updated with new methods after the publication of the present manuscript. Our updated classification of existing methods and tools highlights the most promising in the different branches, with the aim to develop a vision of how existing methods could hybridize and become more complex. We then provide the first hands-on tutorial for multi-objective optimization of metabolic models in R. We finally discuss the implementation of multi-view machine learning approaches in poly-omic integration. Throughout this work, we demonstrate the optimization of trade-offs between multiple metabolic objectives, with a focus on omic data integration through machine learning. We anticipate that the combination of a survey, a perspective on multi-view machine learning and a step-by-step R tutorial should be of interest for both the beginner and the advanced user.


Assuntos
Metabolismo , Modelos Teóricos , Biologia de Sistemas/métodos , Aprendizado de Máquina
12.
PLoS Comput Biol ; 15(7): e1007084, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31295267

RESUMO

Omic data analysis is steadily growing as a driver of basic and applied molecular biology research. Core to the interpretation of complex and heterogeneous biological phenotypes are computational approaches in the fields of statistics and machine learning. In parallel, constraint-based metabolic modeling has established itself as the main tool to investigate large-scale relationships between genotype, phenotype, and environment. The development and application of these methodological frameworks have occurred independently for the most part, whereas the potential of their integration for biological, biomedical, and biotechnological research is less known. Here, we describe how machine learning and constraint-based modeling can be combined, reviewing recent works at the intersection of both domains and discussing the mathematical and practical aspects involved. We overlap systematic classifications from both frameworks, making them accessible to nonexperts. Finally, we delineate potential future scenarios, propose new joint theoretical frameworks, and suggest concrete points of investigation for this joint subfield. A multiview approach merging experimental and knowledge-driven omic data through machine learning methods can incorporate key mechanistic information in an otherwise biologically-agnostic learning process.


Assuntos
Biologia Computacional/métodos , Aprendizado Profundo , Genoma , Aprendizado de Máquina , Redes e Vias Metabólicas , Genótipo , Fenótipo
13.
PLoS Comput Biol ; 15(1): e1006714, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30699206

RESUMO

Gut microbiota and human relationships are strictly connected to each other. What we eat reflects our body-mind connection and synchronizes with people around us. However, how this impacts on gut microbiota and, conversely, how gut bacteria influence our dietary behaviors has not been explored yet. To quantify the complex dynamics of this interplay between gut and human behaviors we explore the "gut-human behavior axis" and its evolutionary dynamics in a real-world scenario represented by the social multiplex network. We consider a dual type of similarity, homophily and gut similarity, other than psychological and unconscious biases. We analyze the dynamics of social and gut microbial communities, quantifying the impact of human behaviors on diets and gut microbial composition and, backwards, through a control mechanism. Meal timing mechanisms and "chrono-nutrition" play a crucial role in feeding behaviors, along with the quality and quantity of food intake. Considering a population of shift workers, we explore the dynamic interplay between their eating behaviors and gut microbiota, modeling the social dynamics of chrono-nutrition in a multiplex network. Our findings allow us to quantify the relation between human behaviors and gut microbiota through the methodological introduction of gut metabolic modeling and statistical estimators, able to capture their dynamic interplay. Moreover, we find that the timing of gut microbial communities is slower than social interactions and shift-working, and the impact of shift-working on the dynamics of chrono-nutrition is a fluctuation of strategies with a major propensity for defection (e.g. high-fat meals). A deeper understanding of the relation between gut microbiota and the dietary behavioral patterns, by embedding also the related social aspects, allows improving the overall knowledge about metabolic models and their implications for human health, opening the possibility to design promising social therapeutic dietary interventions.


Assuntos
Comportamento Alimentar/fisiologia , Microbioma Gastrointestinal/fisiologia , Modelos Biológicos , Comportamento Social , Bactérias/metabolismo , Biomassa , Análise por Conglomerados , Biologia Computacional , Humanos , Metaboloma , Jornada de Trabalho em Turnos , Fatores de Tempo
14.
Bioinformatics ; 34(3): 494-501, 2018 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-28968777

RESUMO

Motivation: Despite being often perceived as the main contributors to cell fate and physiology, genes alone cannot predict cellular phenotype. During the process of gene expression, 95% of human genes can code for multiple proteins due to alternative splicing. While most splice variants of a gene carry the same function, variants within some key genes can have remarkably different roles. To bridge the gap between genotype and phenotype, condition- and tissue-specific models of metabolism have been constructed. However, current metabolic models only include information at the gene level. Consequently, as recently acknowledged by the scientific community, common situations where changes in splice-isoform expression levels alter the metabolic outcome cannot be modeled. Results: We here propose GEMsplice, the first method for the incorporation of splice-isoform expression data into genome-scale metabolic models. Using GEMsplice, we make full use of RNA-Seq quantitative expression profiles to predict, for the first time, the effects of splice isoform-level changes in the metabolism of 1455 patients with 31 different breast cancer types. We validate GEMsplice by generating cancer-versus-normal predictions on metabolic pathways, and by comparing with gene-level approaches and available literature on pathways affected by breast cancer. GEMsplice is freely available for academic use at https://github.com/GEMsplice/GEMsplice_code. Compared to state-of-the-art methods, we anticipate that GEMsplice will enable for the first time computational analyses at transcript level with splice-isoform resolution. Availability and implementation: https://github.com/GEMsplice/GEMsplice_code. Contact: c.angione@tees.ac.uk. Supplementary information: Supplementary data are available at Bioinformatics online.


Assuntos
Neoplasias da Mama/metabolismo , Perfilação da Expressão Gênica/métodos , Regulação Neoplásica da Expressão Gênica , Isoformas de Proteínas/metabolismo , Software , Processamento Alternativo , Neoplasias da Mama/genética , Feminino , Humanos , Isoformas de Proteínas/genética , Splicing de RNA
15.
BMC Bioinformatics ; 19(Suppl 14): 415, 2018 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-30453872

RESUMO

BACKGROUND: Ageing can be classified in two different ways, chronological ageing and biological ageing. While chronological age is a measure of the time that has passed since birth, biological (also known as transcriptomic) ageing is defined by how time and the environment affect an individual in comparison to other individuals of the same chronological age. Recent research studies have shown that transcriptomic age is associated with certain genes, and that each of those genes has an effect size. Using these effect sizes we can calculate the transcriptomic age of an individual from their age-associated gene expression levels. The limitation of this approach is that it does not consider how these changes in gene expression affect the metabolism of individuals and hence their observable cellular phenotype. RESULTS: We propose a method based on poly-omic constraint-based models and machine learning in order to further the understanding of transcriptomic ageing. We use normalised CD4 T-cell gene expression data from peripheral blood mononuclear cells in 499 healthy individuals to create individual metabolic models. These models are then combined with a transcriptomic age predictor and chronological age to provide new insights into the differences between transcriptomic and chronological ageing. As a result, we propose a novel metabolic age predictor. CONCLUSIONS: We show that our poly-omic predictors provide a more detailed analysis of transcriptomic ageing compared to gene-based approaches, and represent a basis for furthering our knowledge of the ageing mechanisms in human cells.


Assuntos
Envelhecimento/genética , Envelhecimento/metabolismo , Genômica , Modelos Biológicos , Adulto , Análise por Conglomerados , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Análise de Componente Principal , Análise de Regressão , Linfócitos T/metabolismo , Adulto Jovem
16.
BMC Bioinformatics ; 19(Suppl 15): 442, 2018 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-30497359

RESUMO

BACKGROUND: The study of cell metabolism is becoming central in several fields such as biotechnology, evolution/adaptation and human disease investigations. Here we present CiliateGEM, the first metabolic network reconstruction draft of the freshwater ciliate Tetrahymena thermophila. We also provide the tools and resources to simulate different growth conditions and to predict metabolic variations. CiliateGEM can be extended to other ciliates in order to set up a meta-model, i.e. a metabolic network reconstruction valid for all ciliates. Ciliates are complex unicellular eukaryotes of presumably monophyletic origin, with a phylogenetic position that is equal from plants and animals. These cells represent a new concept of unicellular system with a high degree of species, population biodiversity and cell complexity. Ciliates perform in a single cell all the functions of a pluricellular organism, including locomotion, feeding, digestion, and sexual processes. RESULTS: After generating the model, we performed an in-silico simulation with the presence and absence of glucose. The lack of this nutrient caused a 32.1% reduction rate in biomass synthesis. Despite the glucose starvation, the growth did not stop due to the use of alternative carbon sources such as amino acids. CONCLUSIONS: The future models obtained from CiliateGEM may represent a new approach to describe the metabolism of ciliates. This tool will be a useful resource for the ciliate research community in order to extend these species as model organisms in different research fields. An improved understanding of ciliate metabolism could be relevant to elucidate the basis of biological phenomena like genotype-phenotype relationships, population genetics, and cilia-related disease mechanisms.


Assuntos
Projetos de Pesquisa , Software , Tetrahymena thermophila/metabolismo , Animais , Biomassa , Filogenia , Tetrahymena thermophila/crescimento & desenvolvimento
17.
BMC Bioinformatics ; 17 Suppl 4: 83, 2016 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-26961692

RESUMO

BACKGROUND: Genomic, transcriptomic, and metabolic variations shape the complex adaptation landscape of bacteria to varying environmental conditions. Elucidating the genotype-phenotype relation paves the way for the prediction of such effects, but methods for characterizing the relationship between multiple environmental factors are still lacking. Here, we tackle the problem of extracting network-level information from collections of environmental conditions, by integrating the multiple omic levels at which the bacterial response is measured. RESULTS: To this end, we model a large compendium of growth conditions as a multiplex network consisting of transcriptomic and fluxomic layers, and we propose a multi-omic network approach to infer similarity of growth conditions by integrating layers of the multiplex network. Each node of the network represents a single condition, while edges are similarities between conditions, as measured by phenotypic and transcriptomic properties on different layers of the network. We then fuse these layers into one network, therefore capturing a global network of conditions and the associated similarities across two omic levels. We apply this multi-omic fusion to an updated genome-scale reconstruction of Escherichia coli that includes underground metabolism and new gene-protein-reaction associations. CONCLUSIONS: Our method can be readily used to evaluate and cross-compare different collections of conditions among different species. Acquiring multi-omic information on the topology of the space of experimental conditions makes it possible to infer the position and to build condition-specific models of untested or incomplete profiles for which experimental data is not available. Our weighted network fusion method for genome-scale models is freely available at https://github.com/maxconway/SNFtool .


Assuntos
Proteínas de Bactérias/metabolismo , Escherichia coli/genética , Genoma Bacteriano , Genômica/métodos , Modelos Biológicos , Biologia de Sistemas/métodos , Adaptação Fisiológica , Proteínas de Bactérias/genética , Meio Ambiente , Redes Reguladoras de Genes , Redes e Vias Metabólicas
18.
Trends Endocrinol Metab ; 35(6): 533-548, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38575441

RESUMO

Genome-scale metabolic models (GEMs) are consolidating as platforms for studying mixed microbial populations, by combining biological data and knowledge with mathematical rigor. However, deploying these models to answer research questions can be challenging due to the increasing number of available computational tools, the lack of universal standards, and their inherent limitations. Here, we present a comprehensive overview of foundational concepts for building and evaluating genome-scale models of microbial communities. We then compare tools in terms of requirements, capabilities, and applications. Next, we highlight the current pitfalls and open challenges to consider when adopting existing tools and developing new ones. Our compendium can be relevant for the expanding community of modelers, both at the entry and experienced levels.


Assuntos
Modelos Biológicos , Microbiota/fisiologia , Humanos
19.
Trends Cell Biol ; 34(2): 85-89, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38087709

RESUMO

Artificial intelligence (AI) is widely used for exploiting multimodal biomedical data, with increasingly accurate predictions and model-agnostic interpretations, which are however also agnostic to biological mechanisms. Combining metabolic modelling, 'omics, and imaging data via multimodal AI can generate predictions that can be interpreted mechanistically and transparently, therefore with significantly higher therapeutic potential.


Assuntos
Inteligência Artificial , Multiômica , Modelos Biológicos
20.
Cancer Med ; 2024 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-38189631

RESUMO

BACKGROUND: Melanoma, the most lethal skin cancer type, occurs more frequently in Parkinson's disease (PD), and PD is more frequent in melanoma patients, suggesting disease mechanisms overlap. α-synuclein, a protein that accumulates in PD brain, and the oncogene DJ-1, which is associated with PD autosomal recessive forms, are both elevated in melanoma cells. Whether this indicates melanoma progression or constitutes a protective response remains unclear. We hereby investigated the molecular mechanisms through which α-synuclein and DJ-1 interact, suggesting novel biomarkers and targets in melanoma. METHODS: The Cancer Genome Atlas (TCGA) expression profiles derived from UCSC Xena were used to obtain α-synuclein and DJ-1 expression and correlated with survival in skin cutaneous melanoma (SKCM). Immunohistochemistry determined the expression in metastatic melanoma lymph nodes. Protein-protein interactions (PPIs) and molecular docking assessed protein binding and affinity with chemotherapeutic drugs. Further validation was performed using in vitro cellular models and ELISA immunoassays. RESULTS: α-synuclein and DJ-1 were upregulated in primary and metastatic SKCM. Aggregated α-synuclein was selectively detected in metastatic melanoma lymph nodes. α-synuclein overexpression in SK-MEL-28 cells induced the expression of DJ-1, supporting PPI and a positive correlation in melanoma patients. Molecular docking revealed a stable protein complex, with differential binding to chemotherapy drugs such as temozolomide, dacarbazine, and doxorubicin. Parallel reduction of both proteins in temozolomide-treated SK-MEL-28 spheroids suggests drug binding may affect protein interaction and/or stability. CONCLUSION: α-synuclein, together with DJ-1, may play a role in melanoma progression and chemosensitivity, constituting novel targets for therapeutic intervention, and possible biomarkers for melanoma.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA