Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Ecol Appl ; 31(8): e02436, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34374154

RESUMO

Biological data collection is entering a new era. Community science, satellite remote sensing (SRS), and local forms of remote sensing (e.g., camera traps and acoustic recordings) have enabled biological data to be collected at unprecedented spatial and temporal scales and resolution. There is growing interest in developing observation networks to collect and synthesize data to improve broad-scale ecological monitoring, but no examples of such networks have emerged to inform decision-making by agencies. Here, we present the implementation of one such jurisdictional observation network (JON), Snapshot Wisconsin, which links synoptic environmental data derived from SRS to biodiversity observations collected continuously from a trail camera network to support management decision-making. We use several examples to illustrate that Snapshot Wisconsin improves the spatial, temporal, and biological resolution and extent of information available to support management, filling gaps associated with traditional monitoring and enabling consideration of new management strategies. JONs like Snapshot Wisconsin further strengthen monitoring inference by contributing novel lines of evidence useful for corroboration or integration. SRS provides environmental context that facilitates inference, prediction, and forecasting, and ultimately helps managers formulate, test, and refine conceptual models for the monitored systems. Although these approaches pose challenges, Snapshot Wisconsin demonstrates that expansive observation networks can be tractably managed by agencies to support decision making, providing a powerful new tool for agencies to better achieve their missions and reshape the nature of environmental decision-making.


Assuntos
Biodiversidade , Tecnologia de Sensoriamento Remoto , Monitoramento Ambiental , Modelos Teóricos , Wisconsin
2.
Ecol Appl ; 29(2): e01849, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30656779

RESUMO

Measurement or observation error is common in ecological data: as citizen scientists and automated algorithms play larger roles processing growing volumes of data to address problems at large scales, concerns about data quality and strategies for improving it have received greater focus. However, practical guidance pertaining to fundamental data quality questions for data users or managers-how accurate do data need to be and what is the best or most efficient way to improve it?-remains limited. We present a generalizable framework for evaluating data quality and identifying remediation practices, and demonstrate the framework using trail camera images classified using crowdsourcing to determine acceptable rates of misclassification and identify optimal remediation strategies for analysis using occupancy models. We used expert validation to estimate baseline classification accuracy and simulation to determine the sensitivity of two occupancy estimators (standard and false-positive extensions) to different empirical misclassification rates. We used regression techniques to identify important predictors of misclassification and prioritize remediation strategies. More than 93% of images were accurately classified, but simulation results suggested that most species were not identified accurately enough to permit distribution estimation at our predefined threshold for accuracy (<5% absolute bias). A model developed to screen incorrect classifications predicted misclassified images with >97% accuracy: enough to meet our accuracy threshold. Occupancy models that accounted for false-positive error provided even more accurate inference even at high rates of misclassification (30%). As simulation suggested occupancy models were less sensitive to additional false-negative error, screening models or fitting occupancy models accounting for false-positive error emerged as efficient data remediation solutions. Combining simulation-based sensitivity analysis with empirical estimation of baseline error and its variability allows users and managers of potentially error-prone data to identify and fix problematic data more efficiently. It may be particularly helpful for "big data" efforts dependent upon citizen scientists or automated classification algorithms with many downstream users, but given the ubiquity of observation or measurement error, even conventional studies may benefit from focusing more attention upon data quality.


Assuntos
Confiabilidade dos Dados , Ecologia , Algoritmos
3.
Environ Manage ; 57(5): 987-97, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-26888074

RESUMO

There are limited examples of efforts to systematically monitor and track climate change adaptation progress in the context of natural resource management, despite substantial investments in adaptation initiatives. To better understand the status of adaptation within state natural resource agencies, we utilized and problematized a rational decision-making framework to characterize adaptation at the level of public land managers in the Upper Midwest. We conducted in-depth interviews with 29 biologists and foresters to provide an understanding of managers' experiences with, and perceptions of, climate change impacts, efforts towards planning for climate change, and a full range of actions implemented to address climate change. While the majority of managers identified climate change impacts affecting their region, they expressed significant uncertainty in interpreting those signals. Just under half of managers indicated planning efforts are underway, although most planning is remote from local management. Actions already implemented include both forward-looking measures and those aimed at coping with current impacts. In addition, cross-scale dynamics emerged as an important theme related to the overall adaptation process. The results hold implications for tracking future progress on climate change adaptation. Common definitions or measures of adaptation (e.g., presence of planning documents) may need to be reassessed for applicability at the level of public land managers.


Assuntos
Adaptação Fisiológica , Mudança Climática , Conservação dos Recursos Naturais , Tomada de Decisões , Clima , Florestas , Órgãos Governamentais , Humanos , Minnesota , Estações do Ano
4.
Nat Ecol Evol ; 8(5): 924-935, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38499871

RESUMO

Wildlife must adapt to human presence to survive in the Anthropocene, so it is critical to understand species responses to humans in different contexts. We used camera trapping as a lens to view mammal responses to changes in human activity during the COVID-19 pandemic. Across 163 species sampled in 102 projects around the world, changes in the amount and timing of animal activity varied widely. Under higher human activity, mammals were less active in undeveloped areas but unexpectedly more active in developed areas while exhibiting greater nocturnality. Carnivores were most sensitive, showing the strongest decreases in activity and greatest increases in nocturnality. Wildlife managers must consider how habituation and uneven sensitivity across species may cause fundamental differences in human-wildlife interactions along gradients of human influence.


Assuntos
COVID-19 , Atividades Humanas , Mamíferos , Animais , Humanos , COVID-19/epidemiologia , Animais Selvagens , Ecossistema
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA