Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Plants (Basel) ; 13(12)2024 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-38931114

RESUMO

The combined approaches between ex situ and in situ conservation are of great importance for threatened species in urgent need of protection. This study aims to develop concrete actions to preserve the relic of 30 adult trees of the Sicilian fir (Abies nebrodensis) from extinction using long-term germplasm conservation in liquid nitrogen (LN, -196 °C). Pollen grains were collected, and their moisture content (MC) was measured. Then, viability (2,3,5-tryphenyl tetrazolium chloride, TTC), in vitro germinability, and enzymatic antioxidant activity (ascorbate peroxidase, APX; catalase, CAT) were evaluated before and after cryopreservation. Seeds collected from mature cones underwent X-ray analysis, and only full seeds were used to excise the zygotic embryos (ZEs) for cryopreservation. The MC percentage of ZEs was determined, and then they were plunged in LN with (+PVS2) or without (-PVS2) Plant Vitrification Solution 2; untreated ZEs were used as a control. Viability (TTC test) and in vitro germination were assessed for all ZEs (+PVS2, -PVS2, and control). Embryogenic callus (EC) lines obtained from mature ZEs were cryopreserved applying the 'encapsulation-dehydration' technique. This study has allowed, after optimizing cryopreservation protocols for pollen, ZEs, and EC of A. nebrodensis, to establish the first cryobank of this endangered species in Polizzi Generosa (Palermo, Italy), inside the 'Madonie Regional Park'. The strategy developed for Sicilian fir conservation will pave the way for similar initiatives for other critically endangered conifer species.

2.
Tree Physiol ; 42(6): 1149-1163, 2022 06 09.
Artigo em Inglês | MEDLINE | ID: mdl-34918169

RESUMO

Recent climate projections predict a more rapid increase of winter temperature than summer and global temperature averages in temperate and cold environments. As there is relatively little experimental knowledge on the effect of winter warming on cambium phenology and stem growth in species growing in cold environments, the setting of manipulative experiments is considered of primary importance, and they can help to decipher the effect of reduced winter chilling and increased forcing temperatures on cambium reactivation, growth and xylem traits. In this study, localized stem heating was applied to investigate the effect of warming from the rest to the growth phase on cambium phenology, intra-annual stem growth dynamics and ring wood features in Picea abies (L.) H.Karst. We hypothesized that reduced winter chilling induces a postponed cambium dormancy release and decrease of stem growth, while high temperature during cell wall lignification determines an enrichment of latewood-like cells. The heating device was designed to maintain a +5 °C temperature delta with respect to air temperature, thus allowing an authentic scenario of warming. Continuous stem heating from the rest (November) to the growing phase determined, at the beginning of radial growth, a reduction of the number of cell layers in the cambium, higher number of cell layers in the wall thickening phase and an asynchronous stem radial growth when comparing heated and ambient saplings. Nevertheless, heating did not induce changes in the number of produced cell layers at the end of the growing season. The analyses of two-photon fluorescence images showed that woody rings formed during heating were enriched with latewood-like cells. Our results showed that an increase of 5 °C of temperature applied to the stem from the rest to growth might not influence, as generally reported, onset of cambial activity, but it could affect xylem morphology of Norway spruce in mountain environments.


Assuntos
Picea , Biodiversidade , Câmbio , Calefação , Picea/fisiologia , Estações do Ano , Temperatura , Madeira , Xilema/fisiologia
3.
J Integr Plant Biol ; 53(10): 783-99, 2011 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-21767344

RESUMO

In temperate regions, latewood is produced when cambial activity declines with the approach of autumnal dormancy. The understanding of the temporal (cambium activity vs dormancy) and spatial (phloem, cambial region, maturing xylem) regulation of key genes involved in the phenylpropanoid pathway during latewood formation represents a crucial step towards providing new insights into the molecular basis of xylogenesis. In this study, the temporal pattern of transcript accumulation of 12 phenylpropanoid genes (PAL1, C4H3/5, C4H4, 4CL3, 4CL4, HCT1, C3H3, CCoAOMT1, COMT2, COMT5, CCR2) was analyzed in maturing xylem and phloem of Picea abies during latewood formation. Quantitative reverse transcription-polymerase chain reaction analyses revealed a well-defined RNA accumulation pattern of genes involved in the phenylpropanoid pathway during latewood formation. Differences in the RNA accumulation patterns were detected between the different tissue types analyzed. The results obtained here demonstrated that the molecular processes involved in monolignol biosynthesis are not restricted to the cambial activity timeframe but continued after the end of cambium cell proliferation. Furthermore, since it has been shown that lignification of maturing xylem takes place in late autumn, we argue on the basis of our data that phloem could play a key role in the monolignol biosynthesis process.


Assuntos
Genes de Plantas/genética , Floema/genética , Picea/crescimento & desenvolvimento , Picea/genética , Propanóis/metabolismo , RNA de Plantas/metabolismo , Madeira/crescimento & desenvolvimento , Xilema/genética , Câmbio/genética , Câmbio/crescimento & desenvolvimento , Celulose/metabolismo , Regulação da Expressão Gênica de Plantas , Lignina/metabolismo , Caules de Planta/genética , Caules de Planta/crescimento & desenvolvimento , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , RNA de Plantas/genética , Padrões de Referência , Madeira/genética
4.
Tree Physiol ; 36(7): 832-46, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-26941291

RESUMO

Seasonal analyses of cambial cell production and day-by-day stem radial increment can help to elucidate how climate modulates wood formation in conifers. Intra-annual dynamics of wood formation were determined with microcores and dendrometers and related to climatic signals in Norway spruce (Picea abies (L.) Karst.). The seasonal dynamics of these processes were observed at two sites of different altitude, Savignano (650 m a.s.l.) and Lavazè (1800 m a.s.l.) in the Italian Alps. Seasonal dynamics of cambial activity were found to be site specific, indicating that the phenology of cambial cell production is highly variable and plastic with altitude. There was a site-specific trend in the number of cells in the wall thickening phase, with the maximum cell production in early July (DOY 186) at Savignano and in mid-July (DOY 200) at Lavazè. The formation of mature cells showed similar trends at the two sites, although different numbers of cells and timing of cell differentiation were visible in the model shapes; at the end of ring formation in 2010, the number of cells was four times higher at Savignano (106.5 cells) than at Lavazè (26.5 cells). At low altitudes, microcores and dendrometers described the radial growth patterns comparably, though the dendrometer function underlined the higher upper asymptote of maximum growth in comparison with the cell production function. In contrast, at high altitude, these functions exhibited different trends. The best model was obtained by fitting functions of the Gompertz model to the experimental data. By combining radial growth and cambial activity indices we defined a model system able to synchronize these processes. Processes of adaptation of the pattern of xylogenesis occurred, enabling P. abies to occupy sites with contrasting climatic conditions. The use of daily climatic variables in combination with plant functional traits obtained by sensors and/or destructive sampling could provide a suitable tool to better investigate the effect of disturbances on response strategies in trees and, consequently, contribute to improving our prediction of tree growth and species resilience based on climate scenarios.


Assuntos
Aclimatação , Altitude , Câmbio/crescimento & desenvolvimento , Picea/crescimento & desenvolvimento , Caules de Planta/crescimento & desenvolvimento , Estações do Ano , Madeira/crescimento & desenvolvimento , Diferenciação Celular , Proliferação de Células , Itália , Modelos Biológicos , Árvores/crescimento & desenvolvimento , Xilema/crescimento & desenvolvimento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA