Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nano Lett ; 18(7): 4473-4481, 2018 07 11.
Artigo em Inglês | MEDLINE | ID: mdl-29924620

RESUMO

SrTiO3-based heterointerfaces support quasi-two-dimensional (2D) electron systems that are analogous to III-V semiconductor heterostructures, but also possess superconducting, magnetic, spintronic, ferroelectric, and ferroelastic degrees of freedom. Despite these rich properties, the relatively low mobilities of 2D complex-oxide interfaces appear to preclude ballistic transport in 1D. Here we show that the 2D LaAlO3/SrTiO3 interface can support quantized ballistic transport of electrons and (nonsuperconducting) electron pairs within quasi-1D structures that are created using a well-established conductive atomic-force microscope (c-AFM) lithography technique. The nature of transport ranges from truly single-mode (1D) to three-dimensional (3D), depending on the applied magnetic field and gate voltage. Quantization of the lowest e2/ h plateau indicate a ballistic mean-free path lMF ∼ 20 µm, more than 2 orders of magnitude larger than for 2D LaAlO3/SrTiO3 heterostructures. Nonsuperconducting electron pairs are found to be stable in magnetic fields as high as B = 11 T and propagate ballistically with conductance quantized at 2 e2/ h. Theories of one-dimensional (1D) transport of interacting electron systems depend crucially on the sign of the electron-electron interaction, which may help explain the highly ballistic transport behavior. The 1D geometry yields new insights into the electronic structure of the LaAlO3/SrTiO3 system and offers a new platform for the study of strongly interacting 1D electronic systems.

2.
Phys Rev Lett ; 120(7): 076801, 2018 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-29542936

RESUMO

The widely reported magnetoresistance oscillations in LaAlO_{3}/SrTiO_{3} heterostructures have invariably been attributed to the Shubnikov-de Haas (SdH) effect, despite a pronounced inconsistency with low-field Hall resistance measurements. Here we report SdH-like resistance oscillations in quasi-1D electron waveguides created at the LaAlO_{3}/SrTiO_{3} interface by conductive atomic force microscopy lithography. These oscillations can be directly attributed to magnetic depopulation of magnetoelectric subbands. Our results suggest that the SdH oscillations in 2D SrTiO_{3}-based systems may originate from naturally forming quasi-1D channels.

3.
Phys Rev Lett ; 120(14): 147001, 2018 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-29694119

RESUMO

We examine superconductivity in LaAlO_{3}/SrTiO_{3} channels with widths that transition from the 1D to the 2D regime. The superconducting critical current is independent of the channel width and increases approximately linearly with the number of parallel channels. Signatures of electron pairing outside of the superconducting regime are also found to be independent of the channel width. Collectively, these results indicate that superconductivity exists at the boundary of these channels and is absent within the interior region of the channels. The intrinsic 1D nature of superconductivity at the LaAlO_{3}/SrTiO_{3} interface imposes strong physical constraints on possible electron pairing mechanisms.

4.
Phys Rev Lett ; 117(9): 096801, 2016 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-27610871

RESUMO

High-mobility complex-oxide heterostructures and nanostructures offer new opportunities for extending the paradigm of quantum transport beyond the realm of traditional III-V or carbon-based materials. Recent quantum transport investigations with LaAlO_{3}/SrTiO_{3}-based quantum dots reveal the existence of a strongly correlated phase in which electrons form spin-singlet pairs without becoming superconducting. Here, we report evidence for the micrometer-scale ballistic transport of electron pairs in quasi-1D LaAlO_{3}/SrTiO_{3} nanowire cavities. In the paired phase, Fabry-Perot-like quantum interference is observed, in sync with conductance oscillations observed in the superconducting regime (at a zero magnetic field). Above a critical magnetic field B_{p}, the electron pairs unbind and the conductance oscillations shift with the magnetic field. These experimental observations extend the regime of ballistic electronic transport to strongly correlated phases.

5.
Phys Chem Chem Phys ; 18(20): 13844-51, 2016 05 18.
Artigo em Inglês | MEDLINE | ID: mdl-27146607

RESUMO

Interfaces of two dissimilar complex oxides exhibit exotic physical properties that are absent in their parent compounds. Of particular interest is insulating LaAlO3 films on an insulating SrTiO3 substrate, where transport measurements have shown a metal-insulator transition as a function of LaAlO3 thickness. Their origin has become the subject of intense research, yet a unifying consensus remains elusive. Here, we report evidence for the electronic reconstruction in both insulating and conducting LaAlO3/SrTiO3 heterointerfaces revealed by O K-edge X-ray absorption spectroscopy. For the insulating samples, the O K-edge XAS spectrum exhibits features characteristic of electronically active point defects identified as noninteger valence states of Ti. For conducting samples, a new shape-resonance at ∼540.5 eV, characteristic of molecular-like oxygen (empty O-2p band), is observed. This implies that the concentration of electronic defects has increased in proportion with LaAlO3 thickness. For larger defect concentrations, the electronic defect states are no longer localized at the Ti orbitals and exhibit pronounced O 2p-O 2p character. Our results demonstrate that, above a critical thickness, the delocalization of O 2p electronic states can be linked to the presence of oxygen vacancies and is responsible for the enhancement of conductivity at the oxide heterointerfaces.

6.
ACS Appl Mater Interfaces ; 12(5): 6048-6055, 2020 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-31913009

RESUMO

A semiconductor that can be doped to be either p-type or n-type is of great importance, as p-n homojunctions are desirable for realizing various electronic devices and processes. However, because of pervasive doping asymmetry for wide band gap semiconductors, the achievement of both p-type and n-type in a single wide gap material is very difficult. Here, we report the success in developing a new transparent magnetic NixCu1-xI halide semiconductor that can be either p-type or n-type depending on Ni fraction in NixCu1-xI. For 0 ≤ x ≤ 0.10, NixCu1-xI films show p-type conductivity. For the range 0.15 ≤ x ≤ 0.35, NixCu1-xI films show an n-type character. The NixCu1-xI films are electrically conducting and optically transparent and show soft ferromagnetic behavior with an optimum conductivity of 42 S cm-1 (x = 0.03) and visible light transmission of 80%. Ultraviolet photoelectron spectroscopy studies on NixCu1-xI films reveal the systematic Fermi level shift toward the conduction band with respect to the valence band as a function Ni concentration. X-ray photoelectron spectroscopy analysis on Ni and I peak positions reveals Ni+2 valence for Ni in NixCu1-xI films, with signatures of Ni-I bonding. The observed p-type behavior originates from Cu vacancy, while the n-type character is identified to originate from the electron donor states generated by Ni incorporation in NixCu1-xI. The constructed homojunction with p-Ni0.0Cu1.0I/n-Ni0.16Cu0.84I shows a characteristic p-n junction behavior with a good rectification ratio of 2 × 102. This new type of NixCu1-xI transparent semiconductor with a tunable carrier type and magnetism may be a candidate for halide-based optoelectronic as well as spintronics development.

7.
ACS Appl Mater Interfaces ; 12(43): 48781-48793, 2020 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-33064438

RESUMO

Lead-free perovskite CaCu3Ti4O12 (CCTO) dielectrics are extremely important candidates for capacitor-varistor dual-function materials. However, their overall success in applications is somewhat controlled by the longstanding issues such as relatively large dielectric loss and insufficiently high electric breakdown field. Herein, we report the success in the preparation of an optimized lead-free (1-x)CaCu3Ti4O12-xSrTiO3 (CCTO-STO) composite system with improved dielectric and nonlinear properties via interface engineering. Interestingly, looking closer at the grain boundaries using transmission electron microscopy, it is found that an obvious interface region with a transition layer of a wrinkled structure is formed between the CCTO matrix phase and STO dopant phase. Significantly, all the composite ceramic samples present high permittivity in the order of about 103 to 104, and the 0.9CCTO-0.1STO composite ceramic sample exhibits a lower dielectric loss of about 0.068 at room temperature and at 1 kHz. Excitingly, the optimized 0.9CCTO-0.1STO composite ceramic sample also exhibits a remarkably elevated breakdown field strength of about 14.03 kV/cm and a large nonlinear coefficient of about 16.11. The improvement in nonlinear properties with a high breakdown field strength and large nonlinear coefficient could be attributed to the interfacial effect in the composite structure, originating from the formation of the transition layer with a wrinkle structure at the interface between CCTO and STO phases. Such effects can result in great electrical heterogeneity caused by the higher resistance of the grain boundary and the enhanced potential barrier at the interface region. The new insights on the formation of the interfacial wrinkle structure near the phase boundaries of the CCTO-STO composite system and their effects on improvement of electrical properties can stimulate future research on lead-free CCTO-STO-based systems toward capacitor-varistor dual-function applications and may offer an effective way to design other lead-free dielectric materials as well.

8.
Sci Rep ; 5: 13314, 2015 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-26307382

RESUMO

The 2D electron gas at the polar/non-polar oxide interface has become an important platform for several novel oxide electronic devices. In this paper, the transport properties of a wide range of polar perovskite oxide ABO3/SrTiO3 (STO) interfaces, where ABO3 includes LaAlO3, PrAlO3, NdAlO3, NdGaO3 and LaGaO3 in both crystalline and amorphous forms, were investigated. A robust 4 unit cell (uc) critical thickness for metal insulator transition was observed for crystalline polar layer/STO interface while the critical thickness for amorphous ones was strongly dependent on the B site atom and its oxygen affinity. For the crystalline interfaces, a sharp transition to the metallic state (i.e. polarization catastrophe induced 2D electron gas only) occurs at a growth temperature of 515 °C which corresponds to a critical relative crystallinity of ~70 ± 10% of the LaAlO3 overlayer. This temperature is generally lower than the metal silicide formation temperature and thus offers a route to integrate oxide heterojunction based devices on silicon.

9.
Sci Rep ; 4: 6173, 2014 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-25146230

RESUMO

High-k dielectric oxides are supposedly ideal gate-materials for ultra-high doping in graphene and other 2D-crystals. Here, we report a temperature-dependent electronic transport study on chemical vapor deposited-graphene gated with SrTiO3 (STO) thin film substrate. At carrier densities away from charge neutrality point the temperature-dependent resistivity of our graphene samples on both STO and SiO2/Si substrates show metallic behavior with contributions from Coulomb scattering and flexural phonons attributable to the presence of characteristic quasi-periodic nano-ripple arrays. Significantly, for graphene samples on STO substrates we observe an anomalous 'slope-break' in the temperature-dependent resistivity for T = 50 to 100 K accompanied by a decrease in mobility above 30 K. Furthermore, we observe an unusual decrease in the gate-induced doping-rate at low temperatures, despite an increase in dielectric constant of the substrate. We believe that a complex mechanism is at play as a consequence of the structural phase transition of the underlying substrate showing an anomalous transport behavior in graphene on STO. The anomalies are discussed in the context of Coulomb as well as phonon scattering.

10.
ACS Nano ; 7(12): 10572-81, 2013 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-24266519

RESUMO

Patterning of the two-dimensional electron gas formed at the interface of two band insulators such as LaAlO3/SrTiO3 is one of the key challenges in oxide electronics. The use of energetic ion beam exposure for engineering the interface conductivity has been investigated. We found that this method can be utilized to manipulate the conductivity at the LaAlO3/SrTiO3 interface by carrier localization, arising from the defects created by the ion beam exposure, eventually producing an insulating ground state. This process of ion-beam-induced defect creation results in structural changes in SrTiO3 as revealed by the appearance of first-order polar TO2 and TO4 vibrational modes which are associated with Ti-O bonds in the Raman spectra of the irradiated samples. Furthermore, significant observation drawn from the magnetotransport measurements is that the irradiated (unirradiated) samples showed a negative (positive) magnetoresistance along with simultaneous emergence of first-order (only second order) Raman modes. In spectroscopic ellipsometry measurements, the optical conductivity features of the irradiated interface are broadened because of the localization effects, along with a decrease of spectral weight from 4.2 to 5.4 eV. These experiments allow us to conclude that the interface ground state (metallic/insulating) at the LaAlO3/SrTiO3 can be controlled by tailoring the defect structure of the SrTiO3 with ion beam exposure. A resist-free, single-step direct patterning of a conducting LaAlO3/SrTiO3 interface has been demonstrated. Patterns with a spatial resolution of 5 µm have been fabricated using a stencil mask, while nanometer scale patterns may be possible with direct focused ion beam writing.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA