Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Biomech ; 152: 111588, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37094384

RESUMO

While cyclic adenosine monophosphate (cAMP) is typically considered an intracellular signal, it has been shown to spread between adjacent cells through connexin-based gap junction channels, promoting gap junctional intercellular communication (GJIC). Gap junction-mediated signaling is critical for the coordinated function of many tissues, and have been linked with cardiovascular disease, neurogenerative disease, and cancers. In particular, it plays a complex role in tumor suppression or promotion. This work introduces a two-dimensional finite element model that can describe intercellular cAMP signaling in the presence of gap junctions on membrane interfaces. The model was utilized to simulate cAMP transfer through one and two gap junction channels on the interface of a cluster of two pulmonary microvascular endothelial cells. The simulation results were found to generally agree with what has been observed in the literature in terms of GJIC. The research outcomes suggest that the proposed model can be employed to evaluate the permeability properties of a gap junction channel if its cAMP volumetric flow rate can be experimentally measured.


Assuntos
Células Endoteliais , Junções Comunicantes , Análise de Elementos Finitos , AMP Cíclico , Conexinas , Comunicação Celular
2.
Artigo em Inglês | MEDLINE | ID: mdl-35756693

RESUMO

Cyclic AMP (cAMP) is a second messenger that regulates a wide variety of cellular functions. There is increasing evidence suggesting that signaling specificity is due in part to cAMP compartmentalization. In the last 15 years, development of cAMP-specific Förster resonance energy transfer (FRET) probes have allowed us to visualize spatial distributions of intracellular cAMP signals. The use of FRET-based sensors is not without its limitations, as FRET probes display low signal to noise ratio (SNR). Hyperspectral imaging and analysis approaches have, in part, allowed us to overcome these limitations by improving the SNR of FRET measurements. Here we demonstrate that the combination of hyperspectral imaging approaches, linear unmixing, and adaptive thresholding allow us to visualize regions of elevated cAMP (regions of interest - ROIs) in an unbiased manner. We transfected cDNA encoding the H188 FRET-based cAMP probe into pulmonary microvascular endothelial cells. Application of isoproterenol and prostaglandin E1 (PGE1) triggered complex cAMP responses. Spatial and temporal aspects of cAMP responses were quantified using an adaptive thresholding approach and compared between agonist treatment groups. Our data indicate that both the origination sites and spatial/temporal distributions of cAMP signals are agonist dependent in PMVECs. We are currently analyzing the data in order to better quantify the distribution of cAMP signals triggered by different agonists.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA