RESUMO
INTRODUCTION: The aim of this study was to describe the design and the participants' baseline characteristics of a prospective natural history study of geographic atrophy (GA) secondary to age-related macular degeneration. METHODS: The optical coherence tomography (OCT) and microperimetry biomarker evaluation in patients with GA (OMEGA) study was conducted at a tertiary referral center (ClinicalTrials.gov identifier: NCT05963646). Participants were followed for 12 months during 4 visits (baseline and follow-up exams at weeks 12, 24, and 48) with best-corrected Early Treatment of Diabetic Retinopathy Study visual acuity, low-luminance visual acuity (LLVA), and quick contrast sensitivity function testing. Further, participants underwent spectral-domain OCT, OCT angiography, fundus autofluorescence imaging, and mesopic microperimetry testing. RESULTS: Thirty participants (median [IQR] age of 79 [77, 84] years) and 37 study eyes were included with a (median [IQR]) GA area of 1.40 mm2 (0.49, 5.24) at baseline. Out of 37 study eyes, six developed macular neovascularizations (16%). The study-eye best-corrected visual acuity was (median [IQR]) 0.18 logarithm of the minimum angle of resolution (logMAR) (0.06, 0.26), LLVA 0.66 logMAR (0.36, 0.88), and the microperimetry mean sensitivity 18.4 dB (9.21, 20.9). The highest correlation between square root GA area and a visual function test was evident for LLVA (R2 of 0.578), followed by area under the log contrast sensitivity function curve (0.519) and microperimetral retinal sensitivity (0.487). CONCLUSION: This report lays out the design and baseline characteristics of the OMEGA study, which aims to contribute to the understanding of the natural history of GA. The OMEGA study will provide estimates of the ability to detect change and retest reliability for a panel of structure and functional assessments.
Assuntos
Atrofia Geográfica , Humanos , Angiofluoresceinografia , Seguimentos , Atrofia Geográfica/diagnóstico , Estudos Prospectivos , Reprodutibilidade dos Testes , Tomografia de Coerência Óptica/métodos , Transtornos da Visão , Testes de Campo Visual/métodos , Campos VisuaisRESUMO
Purpose: The purpose of this study was to provide a large, multi-center normative dataset for the Macular Integrity Assessment (MAIA) microperimeter and compare the goodness-of-fit and prediction interval calibration-error for a panel of hill-of-vision models. Methods: Microperimetry examinations of healthy eyes from five independent study groups and one previously available dataset were included (1137 tests from 531 eyes of 432 participants [223 women and 209 men]). Linear mixed models (LMMs) were fitted to the data to obtain interpretable hill-of-vision models. A panel of regression models to predict normative data was compared using cross-validation with site-wise splits. The mean absolute error (MAE) and miscalibration area (area between the calibration curve and the ideal diagonal) were evaluated as the performance measures. Results: Based on the parameters "participant age," "eccentricity from the fovea," "overlap with the central fixation target," and "eccentricity along the four principal meridians," a Bayesian mixed model had the lowest MAE (2.13 decibel [dB]; 95% confidence interval [CI] = 1.9-2.36 dB) and miscalibration area (0.13; 95% CI = 0.07-0.19). However, a parsimonious linear model provided a comparable MAE (2.17 dB; 95% CI = 1.93-2.4 dB) and a similar miscalibration area (0.14; 95% CI = 0.08-0.2). Conclusions: Normal variations in visual sensitivity on mesopic microperimetry can be effectively explained by a linear model that includes age and eccentricity. The dataset and a code vignette are provided for estimating normative values across a large range of retinal locations, applicable to customized testing patterns.