Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 52
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
2.
Haematologica ; 103(12): 1997-2007, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30076174

RESUMO

The process of maturation of reticulocytes into fully mature erythrocytes that occurs in the circulation is known to be characterized by a complex interplay between loss of cell surface area and volume, removal of remnant cell organelles and redundant proteins, and highly selective membrane and cytoskeletal remodeling. However, the mechanisms that underlie and drive these maturational processes in vivo are currently poorly understood and, at present, reticulocytes derived through in vitro culture fail to undergo the final transition to erythrocytes. Here, we used high-throughput proteomic methods to highlight differences between erythrocytes, cultured reticulocytes and endogenous reticulocytes. We identify a cytoskeletal protein, non-muscle myosin IIA (NMIIA) whose abundance and phosphorylation status differs between reticulocytes and erythrocytes and localized it in the proximity of autophagosomal vesicles. An ex vivo circulation system was developed to simulate the mechanical shear component of circulation and demonstrated that mechanical stimulus is necessary, but insufficient for reticulocyte maturation. Using this system in concurrence with non-muscle myosin II inhibition, we demonstrate the involvement of non-muscle myosin IIA in reticulocyte remodeling and propose a previously undescribed mechanism of shear stress-responsive vesicle clearance that is crucial for reticulocyte maturation.


Assuntos
Vesículas Citoplasmáticas/metabolismo , Eritrócitos/metabolismo , Miosina Tipo II/metabolismo , Reticulócitos/metabolismo , Diferenciação Celular , Células Cultivadas , Proteínas do Citoesqueleto/metabolismo , Eritrócitos/citologia , Eritropoese , Humanos , Proteínas Motores Moleculares/metabolismo , Cadeias Pesadas de Miosina/metabolismo , Fosforilação , Proteômica/métodos , Reticulócitos/citologia
3.
Mol Cell Proteomics ; 15(6): 1938-46, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-27006477

RESUMO

Cord blood stem cells are an attractive starting source for the production of red blood cells in vitro for therapy because of additional expansion potential compared with adult peripheral blood progenitors and cord blood banks usually being more representative of national populations than blood donors. Consequently, it is important to establish how similar cord RBCs are to adult cells. In this study, we used multiplex tandem mass tag labeling combined with nano-LC-MS/MS to compare the proteome of adult and cord RBCs and reticulocytes. 2838 unique proteins were identified, providing the most comprehensive compendium of RBC proteins to date. Using stringent criteria, 1674 proteins were quantified, and only a small number differed in amount between adult and cord RBC. We focused on proteins critical for RBC function. Of these, only the expected differences in globin subunits, along with higher levels of carbonic anhydrase 1 and 2 and aquaporin-1 in adult RBCs would be expected to have a phenotypic effect since they are associated with the differences in gaseous exchange between adults and neonates. Since the RBC and reticulocyte samples used were autologous, we catalogue the change in proteome following reticulocyte maturation. The majority of proteins (>60% of the 1671 quantified) reduced in abundance between 2- and 100-fold following maturation. However, ∼5% were at a higher level in RBCs, localized almost exclusively to cell membranes, in keeping with the known clearance of intracellular recycling pools during reticulocyte maturation. Overall, these data suggest that, with respect to the proteome, there is no barrier to the use of cord progenitors for the in vitro generation of RBCs for transfusion to adults other than the expression of fetal, not adult, hemoglobin.


Assuntos
Células Eritroides/citologia , Sangue Fetal/citologia , Proteoma/análise , Proteômica/métodos , Reticulócitos/citologia , Adulto , Anidrase Carbônica I/metabolismo , Anidrase Carbônica II/metabolismo , Diferenciação Celular , Cromatografia Líquida , Células Eritroides/metabolismo , Sangue Fetal/metabolismo , Humanos , Recém-Nascido , Reticulócitos/metabolismo , Espectrometria de Massas em Tandem
4.
Blood ; 126(15): 1831-4, 2015 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-26276668

RESUMO

During maturation to an erythrocyte, a reticulocyte must eliminate any residual organelles and reduce its surface area and volume. Here we show this involves a novel process whereby large, intact, inside-out phosphatidylserine (PS)-exposed autophagic vesicles are extruded. Cell surface PS is a well-characterized apoptotic signal initiating phagocytosis. In peripheral blood from patients after splenectomy or in patients with sickle cell disease (SCD), the number of circulating red cells exposing PS on their surface is elevated. We show that in these patients PS is present on the cell surface of red cells in large (∼1.4 µm) discrete areas corresponding to autophagic vesicles. The autophagic vesicles found on reticulocytes are identical to those observed on red cells from splenectomized individuals and patients with SCD. Our data suggest the increased thrombotic risk associated with splenectomy, and patients with hemoglobinopathies is a possible consequence of increased levels of circulating mature reticulocytes expressing inside-out PS-exposed autophagic vesicles because of asplenia.


Assuntos
Anemia Falciforme/sangue , Anemia Falciforme/patologia , Autofagia , Eritrócitos/patologia , Fosfatidilserinas/metabolismo , Reticulócitos/patologia , Western Blotting , Estudos de Casos e Controles , Proliferação de Células , Células Cultivadas , Eritrócitos/metabolismo , Citometria de Fluxo , Glicoforinas/metabolismo , Humanos , Processamento de Imagem Assistida por Computador , Fagocitose , Fosfatidilserinas/química , Reticulócitos/metabolismo , Esplenectomia
5.
Haematologica ; 102(3): 476-483, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-27909219

RESUMO

The generation of cultured red blood cells from stem cell sources may fill an unmet clinical need for transfusion-dependent patients, particularly in countries that lack a sufficient and safe blood supply. Cultured red blood cells were generated from human CD34+ cells from adult peripheral blood or cord blood by ex vivo expansion, and a comprehensive in vivo survival comparison with standard red cell concentrates was undertaken. Significant amplification (>105-fold) was achieved using CD34+ cells from both cord blood and peripheral blood, generating high yields of enucleated cultured red blood cells. Following transfusion, higher levels of cultured red cells could be detected in the murine circulation compared to standard adult red cells. The proportions of cultured blood cells from cord or peripheral blood sources remained high 24 hours post-transfusion (82±5% and 78±9%, respectively), while standard adult blood cells declined rapidly to only 49±9% by this time. In addition, the survival time of cultured blood cells in mice was longer than that of standard adult red cells. A paired comparison of cultured blood cells and standard adult red blood cells from the same donor confirmed the enhanced in vivo survival capacity of the cultured cells. The study herein represents the first demonstration that ex vivo generated cultured red blood cells survive longer than donor red cells using an in vivo model that more closely mimics clinical transfusion. Cultured red blood cells may offer advantages for transfusion-dependent patients by reducing the number of transfusions required.


Assuntos
Transfusão de Componentes Sanguíneos , Sobrevivência Celular , Reticulócitos/metabolismo , Reticulócitos/transplante , Animais , Antígenos CD34/metabolismo , Diferenciação Celular , Células Cultivadas , Citofagocitose , Eritrócitos/metabolismo , Células-Tronco Hematopoéticas/citologia , Células-Tronco Hematopoéticas/metabolismo , Humanos , Imunofenotipagem , Macrófagos , Camundongos , Fenótipo , Reticulócitos/citologia , Transplante Heterólogo
8.
J Biol Chem ; 288(2): 848-58, 2013 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-23150667

RESUMO

Glycolytic enzymes (GEs) have been shown to exist in multienzyme complexes on the inner surface of the human erythrocyte membrane. Because no protein other than band 3 has been found to interact with GEs, and because several GEs do not bind band 3, we decided to identify the additional membrane proteins that serve as docking sites for GE on the membrane. For this purpose, a method known as "label transfer" that employs a photoactivatable trifunctional cross-linking reagent to deliver a biotin from a derivatized GE to its binding partner on the membrane was used. Mass spectrometry analysis of membrane proteins that were biotinylated following rebinding and photoactivation of labeled GAPDH, aldolase, lactate dehydrogenase, and pyruvate kinase revealed not only the anticipated binding partner, band 3, but also the association of GEs with specific peptides in α- and ß-spectrin, ankyrin, actin, p55, and protein 4.2. More importantly, the labeled GEs were also found to transfer biotin to other GEs in the complex, demonstrating for the first time that GEs also associate with each other in their membrane complexes. Surprisingly, a new GE binding site was repeatedly identified near the junction of the membrane-spanning and cytoplasmic domains of band 3, and this binding site was confirmed by direct binding studies. These results not only identify new components of the membrane-associated GE complexes but also provide molecular details on the specific peptides that form the interfacial contacts within each interaction.


Assuntos
Proteína 1 de Troca de Ânion do Eritrócito/metabolismo , Enzimas/metabolismo , Membrana Eritrocítica/metabolismo , Glicólise , Proteínas de Membrana/metabolismo , Sequência de Aminoácidos , Western Blotting , Cromatografia Líquida , Eletroforese em Gel de Poliacrilamida , Membrana Eritrocítica/enzimologia , Humanos , Proteínas de Membrana/química , Modelos Moleculares , Dados de Sequência Molecular , Espectrometria de Massas em Tandem
9.
Blood ; 119(26): 6296-306, 2012 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-22490681

RESUMO

The erythrocyte is one of the best characterized human cells. However, studies of the process whereby human reticulocytes mature to erythrocytes have been hampered by the difficulty of obtaining sufficient numbers of cells for analysis. In the present study, we describe an in vitro culture system producing milliliter quantities of functional mature human adult reticulocytes from peripheral blood CD34(+) cells. We show that the final stage of reticulocyte maturation occurs by a previously undescribed mechanism in which large glycophorin A-containing vesicles forming at the cytosolic face of the plasma membrane are internalized and fuse with autophagosomes before expulsion of the autophagosomal contents by exocytosis. Early reticulocyte maturation is characterized by the selective elimination of unwanted plasma membrane proteins (CD71, CD98, and ß1 integrin) through the endosome-exosome pathway. In contrast, late maturation is characterized by the generation of large glycophorin A-decorated vesicles of autophagic origin.


Assuntos
Exocitose/fisiologia , Glicoforinas/metabolismo , Fusão de Membrana/fisiologia , Fagossomos/fisiologia , Reticulócitos/fisiologia , Vesículas Transportadoras/fisiologia , Adulto , Diferenciação Celular , Membrana Celular/metabolismo , Eritrócitos/fisiologia , Eritrócitos/ultraestrutura , Humanos , Microscopia Confocal , Oxigênio/metabolismo , Fagossomos/metabolismo , Reticulócitos/metabolismo , Reticulócitos/ultraestrutura , Vesículas Transportadoras/metabolismo
10.
Haematologica ; 99(11): 1677-85, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25107887

RESUMO

A major barrier to the clinical use of erythrocytes generated in vitro from pluripotent stem cells or cord blood progenitors is failure of these erythrocytes to express adult hemoglobin. The key regulators of globin switching KLF1 and BCL11A are absent or at a lower level than in adult cells in K562 and erythroid cells differentiated in vitro from induced pluripotent stem cells and cord blood progenitors. Transfection or transduction of K562 and cord blood erythroid cells with either KLF1 or BCL11A-XL had little effect on ß-globin expression. In contrast, transduction with both transcription factors stimulated ß-globin expression. Similarly, increasing the level of BCL11A-XL in the induced pluripotent stem cell-derived erythroid cell line HiDEP-1, which has levels of endogenous KLF1 similar to adult cells but lacks BCL11A, resulted in levels of ß-globin equivalent to that of adult erythroid cells. Interestingly, this increase in ß-globin was coincident with a decrease in ε- and ζ-, but not γ-globin, implicating BCL11A in repression of embryonic globin expression. The data show that KLF1 and BCL11A-XL together are required, but sufficient to induce adult levels of ß-globin in induced pluripotent stem cell and cord blood-derived erythroid cells that intrinsically express embryonic or fetal globin.


Assuntos
Proteínas de Transporte/genética , Células Eritroides/metabolismo , Hemoglobina Fetal/genética , Expressão Gênica , Fatores de Transcrição Kruppel-Like/genética , Proteínas Nucleares/genética , Transdução Genética , Globinas beta/genética , Células-Tronco Adultas/citologia , Células-Tronco Adultas/metabolismo , Diferenciação Celular/genética , Linhagem Celular , Células Eritroides/citologia , Células-Tronco Hematopoéticas/citologia , Células-Tronco Hematopoéticas/metabolismo , Humanos , Células-Tronco Pluripotentes Induzidas/citologia , Células-Tronco Pluripotentes Induzidas/metabolismo , Células K562 , Fenótipo , Proteínas Repressoras , Transfecção , Globinas épsilon/genética , gama-Globinas/genética
12.
Blood ; 118(1): 182-191, 2011 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-21527529

RESUMO

Band 3, the major anion transport protein of human erythrocytes, forms the core of a multiprotein complex in the erythrocyte membrane. Here we studied the spatiotemporal mechanisms of band 3 multiprotein complex assembly during erythropoiesis. Significant pools of intracellular band 3 and Rh-associated glycoprotein (RhAG) were found in the basophilic erythroblast. These intracellular pools decreased in the polychromatic erythroblast, whereas surface expression increased and were lowest in the orthochromatic erythroblast and reticulocytes. Protease treatment of intact cells to remove extracellular epitopes recognized by antibodies to band 3 and RhAG was used to study surface delivery kinetics and intracellular complex composition from the proerythroblast stage to the enucleated reticulocyte. Newly synthesized band 3 and protein 4.2 interact initially in the early stages of the secretory pathway and are found associated at the plasma membrane from the basophilic stage of erythropoiesis. Although we could successfully coimmunoprecipitate Rh with RhAG from plasma membrane pools at a similar stage, no intracellular interaction between these proteins was detectable. Knockdown of RhAG during early erythropoiesis was accompanied by a concomitant drop in membrane expression of Rh polypeptides. These data are consistent with assembly of major components of the band 3 macrocomplex at an early stage during erythropoiesis.


Assuntos
Proteína 1 de Troca de Ânion do Eritrócito/metabolismo , Eritroblastos/metabolismo , Membrana Eritrocítica/metabolismo , Eritropoese/fisiologia , Complexos Multiproteicos/metabolismo , Reticulócitos/metabolismo , Proteínas Sanguíneas/genética , Proteínas Sanguíneas/metabolismo , Diferenciação Celular/fisiologia , Proteínas do Citoesqueleto/metabolismo , Retículo Endoplasmático/metabolismo , Eritroblastos/citologia , Complexo de Golgi/metabolismo , Humanos , Glicoproteínas de Membrana/genética , Glicoproteínas de Membrana/metabolismo , Proteínas de Membrana/metabolismo , Peptídeo Hidrolases/metabolismo , Ligação Proteica/fisiologia , RNA Interferente Pequeno , Reticulócitos/citologia
13.
Blood ; 118(11): 3137-45, 2011 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-21778342

RESUMO

Mutations in the human erythroid Krüppel-like factor (EKLF) can lead to either anemia or the benign InLu phenotype. To elucidate the relationship between these mutations and the differing phenotypes, we prepared recombinant forms of wild-type and 5 mutant EKLF proteins and quantitated their binding affinity to a range of EKLF-regulated genes. Missense mutants (R328H, R328L, and R331G) from persons with InLu phenotype did not bind DNA. Hence, as with the heterozygous loss of function nonsense (L127X, S270X, and K292X) and frameshift (P190Lfs and R319Efs) EKLF mutations, monoallelic loss of EKLF does not result in haploinsufficiency at all loci. In contrast, K332Q has a slightly reduced DNA binding affinity (∼ 2-fold) for all promoters examined but exhibits a phenotype only in a compound heterozygote with a nonfunctional allele. E325K also has a reduced, but significant, binding affinity, particularly for the ß-globin gene but results in a disease phenotype even with the wild-type allele expressed, although not as a classic dominant-negative mutant. E325K protein may therefore actively interfere with EKLF-dependent processes by destabilizing transcription complexes, providing a rational explanation for the severity of the disease phenotype. Our study highlights the critical role of residues within the second EKLF zinc finger domain.


Assuntos
Doença/genética , Fatores de Transcrição Kruppel-Like/genética , Fatores de Transcrição Kruppel-Like/fisiologia , Regiões Promotoras Genéticas , Sequência de Aminoácidos , Sítios de Ligação/genética , Células Cultivadas , Humanos , Fatores de Transcrição Kruppel-Like/química , Modelos Biológicos , Modelos Moleculares , Dados de Sequência Molecular , Mutação/fisiologia , Fenótipo , Regiões Promotoras Genéticas/genética , Regiões Promotoras Genéticas/fisiologia , Homologia de Sequência de Aminoácidos , Índice de Gravidade de Doença , Especificidade por Substrato/genética , Ativação Transcricional , Dedos de Zinco/genética
14.
Curr Opin Hematol ; 19(3): 163-9, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-22406823

RESUMO

PURPOSE OF REVIEW: The present article reviews the recent data concerning the generation of red blood cells from haematopoietic stem cells using laboratory culture and discusses the potential for generating cultured red cells in sufficient quantity for use in transfusion practice. RECENT FINDINGS: Functional human reticulocytes have been generated from adult peripheral blood haematopoietic stem cells in laboratory culture without the use of heterologous feeder cells and their viability was demonstrated in vivo. Human erythroid progenitor cells lines have been produced from cord and human induced pluripotent stem cell (hiPSC) haematopoietic progenitors. SUMMARY: Availability of cultured human red cells from haematopoietic stem cells in the quantities required for transfusion therapy would have a major impact on healthcare provision worldwide. Recent studies provide cause for optimism that this ambitious goal is achievable. Functional adult reticulocytes have been made in culture and shown to survive in vivo. Erythroid progenitor cell lines have been derived from cord blood and from human induced pluripotent stem cells, suggesting that large-scale culture of erythroid cell lines and their differentiation to reticulocytes will be possible. Significant problems remain. More efficient enucleation and induction of maturation to an adult phenotype will be required in order to exploit high proliferative capacity of human embryonic stem cells and hiPSCs. Novel bioengineering solutions will be required to generate cultured red cells in the large quantities required, and in this context, use of synthetic three-dimensional scaffolds to mimic the bone marrow niche holds great promise for the future.


Assuntos
Técnicas de Cultura de Células/métodos , Transfusão de Eritrócitos , Eritrócitos/citologia , Células-Tronco Hematopoéticas/fisiologia , Diferenciação Celular/fisiologia , Células-Tronco Hematopoéticas/citologia , Humanos
15.
Curr Opin Hematol ; 19(6): 486-93, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-22954727

RESUMO

PURPOSE OF REVIEW: This review describes the genetics of unusual blood group phenotypes, particularly those with altered expression of Lutheran antigens, and how this area of study has informed our understanding of erythropoiesis in general and haemoglobin switching in particular. RECENT FINDINGS: Mutations in erythroid transcription factors GATA1 (GATA1 binding protein 1) and KLF1 (Kruppel-like factor 1) cause benign and disease phenotypes in humans [X-linked Lu(a-b-) phenotype, In(Lu) blood group phenotype, hereditary persistence of foetal haemoglobin, borderline HbA(2), and congenital dyserythropoietic anaemia (CDA)]. These studies explain the occurrence of rare blood group phenotypes with simultaneous altered expression of antigens from several blood group systems and illuminate the role of KLF1 in gamma and delta globin gene regulation. SUMMARY: The study of rare blood group phenotypes is a potent tool for discovery of mutations in human genes. Elucidation of the molecular basis of the rare In(Lu) phenotype revealed the first mutations in human KLF1. Subsequently, numerous additional mutations have been described, one of which causes a rare form of CDA. Analysis of the X-linked Lu(a-b-) phenotype revealed a mutation in the C-terminal domain of human GATA1. The apparent sensitivity of the Lutheran glycoprotein to alterations in GATA1 and KLF1 activity suggest that it could be a useful biomarker of erythroid transcription factor mutation.


Assuntos
Antígenos de Grupos Sanguíneos/genética , Fator de Transcrição GATA1/genética , Fatores de Transcrição Kruppel-Like/genética , Mutação , Fator de Transcrição GATA1/metabolismo , Regulação da Expressão Gênica , Humanos , Fatores de Transcrição Kruppel-Like/metabolismo , Fenótipo
16.
Br J Haematol ; 158(2): 262-273, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22571328

RESUMO

Red cells with the D-- phenotype do not express the RHCE protein because of mutations in both alleles of the RHCE gene. At present, little is known of the effect this has on the normal function of erythrocytes. In this study a group of five families belonging to a nomadic tribe in Malaysia were identified as carriers of the D-- haplotype. Analysis of homozygous individuals' genomic DNA showed two separate novel mutations. In four of the families, RHCE exons 1, 9 and 10 were present, while the 5th family possessed RHCE exons 1-3 and 10. Analysis of cDNA revealed hybrid transcripts, suggesting a gene conversion event with RHD, consistent with previously reported D-- mutations. Immunoblotting analysis of D-- erythrocyte membrane proteins found that Rh-associated glycoprotein (RHAG) migrates with altered electrophoretic mobility on sodium dodecyl sulphate polyacrylamide gel electrophoresis, consistent with increased glycosylation. Total amounts of Rh polypeptide in D-- membranes were comparable with controls, indicating that the exalted D antigen displayed by D-- red cells may be associated with altered surface epitope presentation. The adhesion molecules CD44 and CD47 are significantly reduced in D--. Together these results suggest that absence of RHCE polypeptide alters the structure and packing of the band 3/Rh macrocomplex.


Assuntos
Membrana Eritrocítica/genética , Sistema do Grupo Sanguíneo Rh-Hr/genética , Sequência de Aminoácidos , Proteína 1 de Troca de Ânion do Eritrócito/metabolismo , Antígeno CD47/sangue , Membrana Eritrocítica/metabolismo , Eritrócitos/metabolismo , Feminino , Genótipo , Heterozigoto , Humanos , Receptores de Hialuronatos/sangue , Masculino , Dados de Sequência Molecular , Mutação , Linhagem , Fenótipo , Sistema do Grupo Sanguíneo Rh-Hr/sangue , Sistema do Grupo Sanguíneo Rh-Hr/metabolismo , Alinhamento de Sequência
17.
Blood ; 115(23): 4635-43, 2010 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-20308598

RESUMO

The relative contribution of founder effects and natural selection to the observed distribution of human blood groups has been debated since blood group frequencies were shown to differ between populations almost a century ago. Advances in our understanding of the migration patterns of early humans from Africa to populate the rest of the world obtained through the use of Y chromosome and mtDNA markers do much to inform this debate. There are clear examples of protection against infectious diseases from inheritance of polymorphisms in genes encoding and regulating the expression of ABH and Lewis antigens in bodily secretions particularly in respect of Helicobacter pylori, norovirus, and cholera infections. However, available evidence suggests surviving malaria is the most significant selective force affecting the expression of blood groups. Red cells lacking or having altered forms of blood group-active molecules are commonly found in regions of the world in which malaria is endemic, notably the Fy(a-b-) phenotype and the S-s- phenotype in Africa and the Ge- and SAO phenotypes in South East Asia. Founder effects provide a more convincing explanation for the distribution of the D- phenotype and the occurrence of hemolytic disease of the fetus and newborn in Europe and Central Asia.


Assuntos
Sistema ABO de Grupos Sanguíneos/metabolismo , Doenças Transmissíveis/metabolismo , Antígenos do Grupo Sanguíneo de Lewis/metabolismo , Sistema ABO de Grupos Sanguíneos/genética , Animais , Cromossomos Humanos Y/genética , Cromossomos Humanos Y/metabolismo , Doenças Transmissíveis/epidemiologia , Doenças Transmissíveis/genética , DNA Mitocondrial/genética , DNA Mitocondrial/metabolismo , Feminino , Doenças Fetais/epidemiologia , Doenças Fetais/genética , Doenças Fetais/metabolismo , Marcadores Genéticos , Humanos , Recém-Nascido , Doenças do Recém-Nascido/epidemiologia , Doenças do Recém-Nascido/genética , Doenças do Recém-Nascido/metabolismo , Antígenos do Grupo Sanguíneo de Lewis/genética , Masculino
18.
Blood ; 114(2): 248-56, 2009 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-19411635

RESUMO

Over the past 20 years the molecular bases of almost all the major blood group antigens have been determined. This research has enabled development of DNA-based methods for determining blood group genotype. The most notable application of these DNA-based methods has been for determining fetal blood group in pregnancies when the fetus is at risk for hemolytic disease of the fetus and newborn. The replacement of all conventional serologic methods for pretransfusion testing by molecular methods is not straightforward. For the majority of transfusion recipients matching beyond ABO and D type is unnecessary, and the minority of untransfused patients at risk of alloimmunization who would benefit from more extensively blood group-matched blood cannot be identified reliably. Even if a method to identify persons most likely to make alloantibodies were available, this would not of itself guarantee the provision of extensively phenotype-matched blood for these patients because this is determined by the size and racial composition of blood donations available for transfusion. However, routine use of DNA-based extended phenotyping to provide optimally matched donations for patients with preexisting antibodies or patients with a known predisposition to alloimmunization, such as those with sickle cell disease, is widely used.


Assuntos
Tipagem e Reações Cruzadas Sanguíneas , Transfusão de Sangue , Eritrócitos/metabolismo , Animais , Anticorpos/imunologia , Antígenos/genética , Antígenos/imunologia , Genótipo , Humanos
19.
Sci Rep ; 11(1): 11035, 2021 05 26.
Artigo em Inglês | MEDLINE | ID: mdl-34040079

RESUMO

Sickle cell disease (SCD) is one of the most common inherited single gene disorders. Polymerisation of sickle hemoglobin results in erythrocytes that are inflexible and adherent, leading to coagulation, vascular and cellular activation and resultant blood vessel blockage. Previous studies have observed elevated numbers of red cell-derived particles (RCDP), also denoted extracellular vesicles, in SCD plasma. Here, imaging flow cytometry was used to quantify all RCDP in SCD plasma. A more heterogenous population of RCDP was observed than previously reported. Significantly, large right side-out red cell macrovesicles (MaV), 7 µm in diameter, were identified. Most RCDP were right side-out but a minor population of inside-out vesicles was also present. Electron micrographs confirmed the heterogenous nature of the RCDP detected. All MaV are decorated with prothrombotic phosphatidylserine (PS) and their removal from plasma lengthened clotting times by more than three-fold. Removal of all right side-out RCDP from SCD patient plasma samples resulted in a seven-fold increase in clotting time. These results indicate that MaV comprise a large area of prothrombotic membrane and are thus major contributors to hypercoagulation in SCD. Consequently, controlled removal of MaV and PS exposed RCDP from plasma could provide a novel therapy for managing this disease.


Assuntos
Anemia Falciforme , Trombofilia , Coagulação Sanguínea , Membrana Eritrocítica , Fosfatidilserinas/metabolismo , Trombina/metabolismo
20.
EJHaem ; 2(2): 175-187, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-34124710

RESUMO

The SARS-CoV-2 virus causes COVID-19, an infection capable of causing severe disease and death but which can also be asymptomatic or oligosymptomatic. We investigated whether ABO blood group or secretor status was associated with COVID-19 severity. We investigated secretor status because expression of ABO glycans on secreted proteins and non-erythroid cells are controlled by a fucosyltransferase (FUT2), and inactivating FUT2 mutations result in a non-secretor phenotype which protects against some viral infections. Data combined from healthcare records and our own laboratory tests (n = 275) of hospitalized SARS-CoV-2 polymerase chain reaction positive patients confirmed higher than expected numbers of blood group A individuals compared to O (RR = 1.24, CI 95% [1.05, 1.47], p = 0.0111). There was also a significant association between group A and COVID-19-related cardiovascular complications (RR = 2.56, CI 95% [1.43, 4.55], p = 0.0011) which is independent of gender. Molecular analysis revealed that group A non-secretors are significantly less likely to be hospitalized than secretors. Testing of convalescent plasma donors, among whom the majority displayed COVID-19 symptoms and only a small minority required hospitalization, group A non-secretors were slightly over-represented. Our findings showed that group A non-secretors are not resistant to infection by SARS-CoV-2, but are more likely to experience a less severe form of associated disease.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA