Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 64
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Ultrason Imaging ; : 1617346241253798, 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38770999

RESUMO

Given its real-time capability to quantify mechanical tissue properties, ultrasound shear wave elastography holds significant promise in clinical musculoskeletal imaging. However, existing shear wave elastography methods fall short in enabling full-limb analysis of 3D anatomical structures under diverse loading conditions, and may introduce measurement bias due to sonographer-applied force on the transducer. These limitations pose numerous challenges, particularly for 3D computational biomechanical tissue modeling in areas like prosthetic socket design. In this feasibility study, a clinical linear ultrasound transducer system with integrated shear wave elastography capabilities was utilized to scan both a calibrated phantom and human limbs in a water tank imaging setup. By conducting 2D and 3D scans under varying compressive loads, this study demonstrates the feasibility of volumetric ultrasound shear wave elastography of human limbs. Our preliminary results showcase a potential method for evaluating 3D spatially varying tissue properties, offering future extensions to computational biomechanical modeling of tissue for various clinical scenarios.

2.
Biomed Eng Online ; 22(1): 52, 2023 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-37226240

RESUMO

Tracking points in ultrasound (US) videos can be especially useful to characterize tissues in motion. Tracking algorithms that analyze successive video frames, such as variations of Optical Flow and Lucas-Kanade (LK), exploit frame-to-frame temporal information to track regions of interest. In contrast, convolutional neural-network (CNN) models process each video frame independently of neighboring frames. In this paper, we show that frame-to-frame trackers accumulate error over time. We propose three interpolation-like methods to combat error accumulation and show that all three methods reduce tracking errors in frame-to-frame trackers. On the neural-network end, we show that a CNN-based tracker, DeepLabCut (DLC), outperforms all four frame-to-frame trackers when tracking tissues in motion. DLC is more accurate than the frame-to-frame trackers and less sensitive to variations in types of tissue movement. The only caveat found with DLC comes from its non-temporal tracking strategy, leading to jitter between consecutive frames. Overall, when tracking points in videos of moving tissue, we recommend using DLC when prioritizing accuracy and robustness across movements in videos, and using LK with the proposed error-correction methods for small movements when tracking jitter is unacceptable.


Assuntos
Algoritmos , Redes Neurais de Computação , Ultrassonografia , Extremidade Superior/diagnóstico por imagem , Movimento (Física)
3.
Sensors (Basel) ; 22(11)2022 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-35684868

RESUMO

Cumulative fatigue during repetitive work is associated with occupational risk and productivity reduction. Usually, subjective measures or muscle activity are used for a cumulative evaluation; however, Industry 4.0 wearables allow overcoming the challenges observed in those methods. Thus, the aim of this study is to analyze alterations in respiratory inductance plethysmography (RIP) to measure the asynchrony between thorax and abdomen walls during repetitive work and its relationship with local fatigue. A total of 22 healthy participants (age: 27.0 ± 8.3 yrs; height: 1.72 ± 0.09 m; mass: 63.4 ± 12.9 kg) were recruited to perform a task that includes grabbing, moving, and placing a box in an upper and lower shelf. This task was repeated for 10 min in three trials with a fatigue protocol between them. Significant main effects were found from Baseline trial to the Fatigue trials (p < 0.001) for both RIP correlation and phase synchrony. Similar results were found for the activation amplitude of agonist muscle (p < 0.001), and to the muscle acting mainly as a joint stabilizer (p < 0.001). The latter showed a significant effect in predicting both RIP correlation and phase synchronization. Both RIP correlation and phase synchronization can be used for an overall fatigue assessment during repetitive work.


Assuntos
Pletismografia , Taxa Respiratória , Adolescente , Adulto , Fadiga/diagnóstico , Humanos , Pletismografia/métodos , Sistema Respiratório , Tórax , Adulto Jovem
4.
J Ultrasound Med ; 40(4): 779-786, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32951229

RESUMO

OBJECTIVES: Thyroid shear wave elastography (SWE) has been shown to have advantages compared to biopsy or other imaging modalities in the evaluation of thyroid nodules. However, studies show variability in its assessment. The objective of this study was to evaluate whether stiffness measurements of the normal thyroid, as estimated by SWE, varied due to preload force or the pressure applied between the transducer and the patient. METHODS: In this study, a measurement system was attached to the ultrasound transducer to measure the applied load. Shear wave elastographic measurements were obtained from the left lobe of the thyroid at applied transducer forces between 2 and 10 N. A linear mixed-effects model was constructed to quantify the association between the preload force and stiffness while accounting for correlations between repeated measurements within each participant. The preload force effect on elasticity was modeled by both linear and quadratic terms to account for a possible nonlinear association between these variables. RESULTS: Nineteen healthy volunteers without known thyroid disease participated in the study. The participants had a mean age ± SD of 36 ± 8 years; 74% were female; 74% had a normal body mass index; and 95% were white non-Hispanic/Latino. The estimated elastographic value at a 2-N preload force was 16.7 kPa (95% confidence interval, 14.1-19.3 kPa), whereas the value at 10 N was 29.9 kPa (95% confidence interval, 24.9-34.9 kPa). CONCLUSIONS: The preload force was significantly and nonlinearly associated with SWE estimates of thyroid stiffness. Quantitative standardization of preload forces in the assessment of thyroid nodules using elastography is an integral factor for improving the accuracy of thyroid nodule evaluation.


Assuntos
Técnicas de Imagem por Elasticidade , Nódulo da Glândula Tireoide , Elasticidade , Feminino , Humanos , Masculino , Nódulo da Glândula Tireoide/diagnóstico por imagem
5.
Opt Express ; 28(19): 27893-27902, 2020 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-32988072

RESUMO

Topological states in photonics offer novel prospects for guiding and manipulating photons and facilitate the development of modern optical components for a variety of applications. Over the past few years, photonic topology physics has evolved and unveiled various unconventional optical properties in these topological materials, such as silicon photonic crystals. However, the design of such topological states still poses a significant challenge. Conventional optimization schemes often fail to capture their complex high dimensional design space. In this manuscript, we develop a deep learning framework to map the design space of topological states in the photonic crystals. This framework overcomes the limitations of existing deep learning implementations. Specifically, it reconciles the dimension mismatch between the input (topological properties) and output (design parameters) vector spaces and the non-uniqueness that arises from one-to-many function mappings. We use a fully connected deep neural network (DNN) architecture for the forward model and a cyclic convolutional neural network (cCNN) for the inverse model. The inverse architecture contains the pre-trained forward model in tandem, thereby reducing the prediction error significantly.

6.
Muscle Nerve ; 57(3): 423-429, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-28833292

RESUMO

INTRODUCTION: Muscle echo intensity has been shown to correlate with disease status in muscle disorders, including Duchenne muscular dystrophy (DMD). We report the effect of sonographer-applied load on measurements of muscle echo intensity. METHODS: Quadriceps ultrasound scans were performed on 22 healthy boys and 16 boys with DMD between the ages of 2.2 and 15.3 years. Transducer contact force was increased linearly from 1.5 to 10 N, and echo intensity was measured throughout. RESULTS: Echo intensity increased linearly with strain at a rate of 42 (95% confidence interval [CI]: 21-63) and 74 (95% CI: 49-98) in the healthy and DMD populations, respectively. Echo intensity reliability was moderate at low strain (intraclass correlation coefficient [ICC] = 0.82) and was improved at high strain (ICC = 0.92). DISCUSSION: Sonographer-applied load introduces error in measurements of echo intensity, but it can be minimized by measuring echo intensity at near-maximal levels of compression. Muscle Nerve 57: 423-429, 2018.


Assuntos
Distrofia Muscular de Duchenne/diagnóstico por imagem , Músculo Quadríceps/diagnóstico por imagem , Ultrassonografia/métodos , Adolescente , Criança , Pré-Escolar , Humanos , Masculino , Pressão , Reprodutibilidade dos Testes
7.
Opt Express ; 24(20): 22581-22595, 2016 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-27828329

RESUMO

Poor motion estimation and subsequent registration are detrimental to super-resolution (SR). In this paper, we present a camera sampling method for achieving SR in concentric circular trajectory sampling (CCTS). Using this method, we can precisely control regular radial and angular shifts in CCTS. SR techniques can be subsequently applied ring by ring in radial and angular dimensions. Not only does the proposed camera sampling method eliminate the transient behavior and increases the sampling speed in CCTS, it also preserves the SR accuracy. Our experimental results demonstrate that our approach can accurately discriminate SR pixels from blurry images.

8.
J Ultrasound Med ; 35(9): 1889-97, 2016 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-27417736

RESUMO

OBJECTIVES: The purpose of this study was to investigate the ability of quantitative ultrasound (US) using edge detection analysis to assess patients with Duchenne muscular dystrophy (DMD). METHODS: After Institutional Review Board approval, US examinations with fixed technical parameters were performed unilaterally in 6 muscles (biceps, deltoid, wrist flexors, quadriceps, medial gastrocnemius, and tibialis anterior) in 19 boys with DMD and 21 age-matched control participants. The muscles of interest were outlined by a tracing tool, and the upper third of the muscle was used for analysis. Edge detection values for each muscle were quantified by the Canny edge detection algorithm and then normalized to the number of edge pixels in the muscle region. The edge detection values were extracted at multiple sensitivity thresholds (0.01-0.99) to determine the optimal threshold for distinguishing DMD from normal. Area under the receiver operating curve values were generated for each muscle and averaged across the 6 muscles. RESULTS: The average age in the DMD group was 8.8 years (range, 3.0-14.3 years), and the average age in the control group was 8.7 years (range, 3.4-13.5 years). For edge detection, a Canny threshold of 0.05 provided the best discrimination between DMD and normal (area under the curve, 0.96; 95% confidence interval, 0.84-1.00). According to a Mann-Whitney test, edge detection values were significantly different between DMD and controls (P < .0001). CONCLUSIONS: Quantitative US imaging using edge detection can distinguish patients with DMD from healthy controls at low Canny thresholds, at which discrimination of small structures is best. Edge detection by itself or in combination with other tests can potentially serve as a useful biomarker of disease progression and effectiveness of therapy in muscle disorders.


Assuntos
Processamento de Imagem Assistida por Computador/métodos , Músculo Esquelético/diagnóstico por imagem , Músculo Esquelético/patologia , Distrofia Muscular de Duchenne/diagnóstico por imagem , Distrofia Muscular de Duchenne/patologia , Ultrassonografia/métodos , Adolescente , Algoritmos , Criança , Pré-Escolar , Humanos , Masculino , Projetos Piloto , Estudos Prospectivos
9.
Opt Express ; 23(15): 20014-29, 2015 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-26367660

RESUMO

Large-area manufacturing surfaces containing micro- and nano-scale features and large-view biomedical targets motivate the development of large-area, high-resolution and high-speed imaging systems. Compared to constant linear velocity scans and raster scans, constant angular velocity scans can significantly attenuate transient behavior while increasing the speed of imaging. In this paper, we theoretically analyze and evaluate the speed, acceleration and jerks of concentric circular trajectory sampling (CCTS). We then present a CCTS imaging system that demonstrates less vibration and lower mapping errors than raster scanning for creating a Cartesian composite image, while maintaining comparably fast scanning speed for large scanning area.

10.
J Opt Soc Am A Opt Image Sci Vis ; 32(2): 293-304, 2015 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-26366602

RESUMO

Ubiquitous applications in diverse fields motivate large-area sampling, super-resolution (SR) and image mosaicing. However, conventional translational sampling has drawbacks including laterally constrained variations between samples. Meanwhile, existing rotational sampling methods do not consider the uniformity of sampling points in Cartesian coordinates, resulting in additional distortion errors in sampled images. We design a novel optimized concentric circular trajectory sampling (OCCTS) method to acquire image information uniformly at fast sampling speeds. The sampling method allows multiple low-resolution images for conventional SR algorithms to be acquired by adding small variations in the angular dimension. Experimental results demonstrate that OCCTS can beat comparable CCTS methods that lack optimized sampling densities by reducing sampling time by more than 11.5% while maintaining 50% distortion error reduction. The SR quality of OCCTS has at least 5.2% fewer distortion errors than the comparable CCTS methods. This paper is the first, to the best of our knowledge, to present an OCCTS method for SR and image mosaicing.

11.
IEEE Trans Biomed Eng ; 71(4): 1094-1103, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37874729

RESUMO

OBJECTIVE: Medical ultrasound is one of the most accessible imaging modalities, but is a challenging modality for quantitative parameters comparison across vendors and sonographers. B-Mode imaging, with limited exceptions, provides a map of tissue boundaries; crucially, it does not provide diagnostically relevant physical quantities of the interior of organ domains.This can be remedied: the raw ultrasound signal carries significantly more information than is present in the B-Mode image. Specifically, the ability to recover speed-of-sound and attenuation maps from the raw ultrasound signal transforms the modality into a tissue-property modality. Deep learning was shown to be a viable tool for recovering speed-of-sound maps. A major hold-back towards deployment is the domain transfer problem, i.e., generalizing from simulations to real data. This is due in part to dependence on the (hard-to-calibrate) system response. METHODS: We explore a remedy to the problem of operator-dependent effects on the system response by introducing a novel approach utilizing the phase information of the IQ demodulated signal. RESULTS: We show that the IQ-phase information effectively decouples the operator-dependent system response from the data, significantly improving the stability of speed-of-sound recovery. We also introduce an improvement to the network topology providing faster and improved results to the state-of-the-art. We present the first publicly available benchmark for this problem: a simulated dataset for raw ultrasound plane wave processing. CONCLUSION: The consideration of the phase of the IQ-signals presents a promising appeal to traversing the transfer learning problem, advancing the goal of real-time speed-of-sound imaging.


Assuntos
Benchmarking , Som , Ultrassonografia/métodos , Ondas Ultrassônicas , Imagens de Fantasmas
12.
Front Robot AI ; 11: 1331249, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38933083

RESUMO

Implementing and deploying advanced technologies are principal in improving manufacturing processes, signifying a transformative stride in the industrial sector. Computer vision plays a crucial innovation role during this technological advancement, demonstrating broad applicability and profound impact across various industrial operations. This pivotal technology is not merely an additive enhancement but a revolutionary approach that redefines quality control, automation, and operational efficiency parameters in manufacturing landscapes. By integrating computer vision, industries are positioned to optimize their current processes significantly and spearhead innovations that could set new standards for future industrial endeavors. However, the integration of computer vision in these contexts necessitates comprehensive training programs for operators, given this advanced system's complexity and abstract nature. Historically, training modalities have grappled with the complexities of understanding concepts as advanced as computer vision. Despite these challenges, computer vision has recently surged to the forefront across various disciplines, attributed to its versatility and superior performance, often matching or exceeding the capabilities of other established technologies. Nonetheless, there is a noticeable knowledge gap among students, particularly in comprehending the application of Artificial Intelligence (AI) within Computer Vision. This disconnect underscores the need for an educational paradigm transcending traditional theoretical instruction. Cultivating a more practical understanding of the symbiotic relationship between AI and computer vision is essential. To address this, the current work proposes a project-based instructional approach to bridge the educational divide. This methodology will enable students to engage directly with the practical aspects of computer vision applications within AI. By guiding students through a hands-on project, they will learn how to effectively utilize a dataset, train an object detection model, and implement it within a microcomputer infrastructure. This immersive experience is intended to bolster theoretical knowledge and provide a practical understanding of deploying AI techniques within computer vision. The main goal is to equip students with a robust skill set that translates into practical acumen, preparing a competent workforce to navigate and innovate in the complex landscape of Industry 4.0. This approach emphasizes the criticality of adapting educational strategies to meet the evolving demands of advanced technological infrastructures. It ensures that emerging professionals are adept at harnessing the potential of transformative tools like computer vision in industrial settings.

13.
Sci Rep ; 14(1): 13626, 2024 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-38871748

RESUMO

In this manuscript, we develop a multi-party framework tailored for multiple data contributors seeking machine learning insights from combined data sources. Grounded in statistical learning principles, we introduce the Multi-Key Homomorphic Encryption Logistic Regression (MK-HELR) algorithm, designed to execute logistic regression on encrypted multi-party data. Given that models built on aggregated datasets often demonstrate superior generalization capabilities, our approach offers data contributors the collective strength of shared data while ensuring their original data remains private due to encryption. Apart from facilitating logistic regression on combined encrypted data from diverse sources, this algorithm creates a collaborative learning environment with dynamic membership. Notably, it can seamlessly incorporate new participants during the learning process, addressing the key limitation of prior methods that demanded a predetermined number of contributors to be set before the learning process begins. This flexibility is crucial in real-world scenarios, accommodating varying data contribution timelines and unanticipated fluctuations in participant numbers, due to additions and departures. Using the AI4I public predictive maintenance dataset, we demonstrate the MK-HELR algorithm, setting the stage for further research in secure, dynamic, and collaborative multi-party learning scenarios.

14.
Sci Rep ; 14(1): 11214, 2024 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-38755242

RESUMO

The growing expansion of the manufacturing sector, particularly in Mexico, has revealed a spectrum of nearshoring opportunities yet is paralleled by a discernible void in educational tools for various stakeholders, such as engineers, students, and decision-makers. This paper introduces a state-of-the-art framework, incorporating virtual reality (VR) and artificial intelligence (AI) to metamorphose the pedagogy of advanced manufacturing systems. Through a case study focused on the design, production, and evaluation of a robotic platform, the framework endeavors to offer an exhaustive educational experience via an interactive VR environment, encapsulating (1) Robotic platform system design and modeling, enabling users to immerse themselves in the design and simulation of robotic platforms under varied conditions; (2) Virtual manufacturing company, presenting a detailed virtual manufacturing setup to enhance users' comprehension of manufacturing processes and systems, and problem-solving in realistic settings; and (3) Product evaluation, wherein users employ VR to meticulously assess the robotic platform, ensuring optimal functionality and customer satisfaction. This innovative framework melds theoretical acumen with practical application in advanced manufacturing, preparing entities to navigate Mexico's manufacturing sector's vibrant and competitive nearshoring landscape. It creates an immersive environment for understanding modern manufacturing challenges, fostering Mexico's manufacturing sector growth, and maximizing nearshoring opportunities for stakeholders.

15.
J Am Coll Emerg Physicians Open ; 5(3): e13154, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38721036

RESUMO

Objectives: This study aimed to compare the different respiratory rate (RR) monitoring methods used in the emergency department (ED): manual documentation, telemetry, and capnography. Methods: This is a retrospective study using recorded patient monitoring data. The study population includes patients who presented to a tertiary care ED between January 2020 and December 2022. Inclusion and exclusion criteria were patients with simultaneous recorded RR data from all three methods and less than 10 min of recording, respectively. Linear regression and Bland-Altman analysis were performed between different methods. Results: A total of 351 patient encounters met study criteria. Linear regression yielded an R-value of 0.06 (95% confidence interval [CI] 0.00-0.12) between manual documentation and telemetry, 0.07 (95% CI 0.01-0.13) between manual documentation and capnography, and 0.82 (95% CI 0.79-0.85) between telemetry and capnography. The Bland-Altman analysis yielded a bias of -0.8 (95% limits of agreement [LOA] -12.2 to 10.6) between manual documentation and telemetry, bias of -0.6 (95% LOA -13.5 to 12.3) between manual documentation and capnography, and bias of 0.2 (95% LOA -6.2 to 6.6) between telemetry and capnography. Conclusion: There is a poor correlation between manual documentation and both automated methods, while there is relatively good agreement between the automated methods. This finding highlights the need to further investigate the methodology used by the ED staff in monitoring and documenting RR and ways to improve its reliability given that many important clinical decisions are made based on these assessments.

16.
World J Emerg Surg ; 19(1): 13, 2024 04 10.
Artigo em Inglês | MEDLINE | ID: mdl-38600568

RESUMO

BACKGROUND: Small bowel obstruction can occur during pregnancy, which, if missed, can lead to dire consequences for both the mother and foetus. Management of this condition usually requires surgical intervention. However, only a small number of patients are treated conservatively. OBJECTIVE: The objective was to review the literature to determine the feasibility of conservative management for small bowel obstruction. METHODS: A systematic search of the PubMed and Embase databases was performed using the keywords [small bowel obstruction AND pregnancy]. All original articles were then reviewed and included in this review if deemed suitable. CONCLUSION: Conservative management of small bowel obstruction in pregnant women is feasible if the patient is clinically stable and after ruling out bowel ischaemia and closed-loop obstruction.


Assuntos
Tratamento Conservador , Obstrução Intestinal , Feminino , Humanos , Gravidez , Obstrução Intestinal/cirurgia , Intestino Delgado/cirurgia
17.
Sci Rep ; 13(1): 1500, 2023 01 27.
Artigo em Inglês | MEDLINE | ID: mdl-36707658

RESUMO

We estimate central venous pressure (CVP) with force-coupled ultrasound imaging of the internal jugular vein (IJV). We acquire ultrasound images while measuring force applied over the IJV by the ultrasound probe imaging surface. We record collapse force, the force required to completely occlude the vein, in 27 healthy subjects. We find supine collapse force and jugular venous pulsation height (JVP), the clinical noninvasive standard, have a linear correlation coefficient of r2 = 0.89 and an average absolute difference of 0.23 mmHg when estimating CVP. We perturb our estimate negatively by tilting 16 degrees above supine and observe decreases in collapse force for every subject which are predictable from our CVP estimates. We perturb venous pressure positively to values experienced in decompensated heart failure by having subjects perform the Valsalva maneuver while the IJV is being collapsed and observe an increase in collapse force for every subject. Finally, we derive a CVP waveform with an inverse three-dimensional finite element optimization that uses supine collapse force and segmented force-coupled ultrasound data at approximately constant force.


Assuntos
Veias Jugulares , Manobra de Valsalva , Humanos , Pressão Venosa Central , Veias Jugulares/diagnóstico por imagem , Ultrassonografia/métodos , Pressão Venosa
18.
Biomed Opt Express ; 14(6): 2756-2772, 2023 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-37342691

RESUMO

There is an increasing need for 3D ultrasound and photoacoustic (USPA) imaging technology for real-time monitoring of dynamic changes in vasculature or molecular markers in various malignancies. Current 3D USPA systems utilize expensive 3D transducer arrays, mechanical arms or limited-range linear stages to reconstruct the 3D volume of the object being imaged. In this study, we developed, characterized, and demonstrated an economical, portable, and clinically translatable handheld device for 3D USPA imaging. An off-the-shelf, low-cost visual odometry system (the Intel RealSense T265 camera equipped with simultaneous localization and mapping technology) to track free hand movements during imaging was attached to the USPA transducer. Specifically, we integrated the T265 camera into a commercially available USPA imaging probe to acquire 3D images and compared it to the reconstructed 3D volume acquired using a linear stage (ground truth). We were able to reliably detect 500 µm step sizes with 90.46% accuracy. Various users evaluated the potential of handheld scanning, and the volume calculated from the motion-compensated image was not significantly different from the ground truth. Overall, our results, for the first time, established the use of an off-the-shelf and low-cost visual odometry system for freehand 3D USPA imaging that can be seamlessly integrated into several photoacoustic imaging systems for various clinical applications.

19.
J Mech Behav Biomed Mater ; 137: 105541, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36356423

RESUMO

Finite element analysis (FEA) can be used to evaluate applied interface pressures and internal tissue strains for computational prosthetic socket design. This type of framework requires realistic patient-specific limb geometry and constitutive properties. In recent studies, indentations and inverse FEA with MRI-derived 3D patient geometries were used for constitutive parameter identification. However, long computational times and use of specialized equipment presents challenges for clinical, deployment. In this study, we present a novel approach for constitutive parameter identification using a combination of FEA, ultrasound indentation, and shear wave elastography. Local shear modulus measurement using elastography during an ultrasound indentation experiment has particular significance for biomechanical modeling of the residual limb since there are known regional dependencies of soft tissue properties such as varying levels of scarring and atrophy. Beyond prosthesis design, this work has broader implications to the fields of muscle health and monitoring of disease progression.


Assuntos
Técnicas de Imagem por Elasticidade , Humanos , Análise de Elementos Finitos , Desenho de Prótese , Ultrassonografia , Progressão da Doença
20.
Ultrasound Med Biol ; 48(9): 1806-1821, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35811237

RESUMO

We develop, automate and evaluate a calibration-free technique to estimate human carotid artery blood pressure from force-coupled ultrasound images. After acquiring images and force, we use peak detection to align the raw force signal with an optical flow signal derived from the images. A trained convolutional neural network selects a seed point within the carotid in a single image. We then employ a region-growing algorithm to segment and track the carotid in subsequent images. A finite-element deformation model is fit to the observed segmentation and force via a two-stage iterative non-linear optimization. The first-stage optimization estimates carotid artery wall stiffness parameters along with systolic and diastolic carotid pressures. The second-stage optimization takes the output parameters from the first optimization and estimates the carotid blood pressure waveform. Diastolic and systolic measurements are compared with those of an oscillometric brachial blood pressure cuff. In 20 participants, average absolute diastolic and systolic errors are 6.2 and 5.6 mm Hg, respectively, and correlation coefficients are r = 0.7 and r = 0.8, respectively. Force-coupled ultrasound imaging represents an automated, standalone ultrasound-based technique for carotid blood pressure estimation, which motivates its further development and expansion of its applications.


Assuntos
Determinação da Pressão Arterial , Artérias Carótidas , Pressão Sanguínea/fisiologia , Determinação da Pressão Arterial/métodos , Artérias Carótidas/diagnóstico por imagem , Artérias Carótidas/fisiologia , Humanos , Oscilometria , Ultrassonografia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA