Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros

Base de dados
Tipo de documento
Assunto da revista
Intervalo de ano de publicação
1.
Opt Express ; 31(13): 21935-21953, 2023 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-37381279

RESUMO

The overall sensitivity of frontside-illuminated, silicon single-photon avalanche diode (SPAD) arrays has often suffered from fill factor limitations. The fill factor loss can however be recovered by employing microlenses, whereby the challenges specific to SPAD arrays are represented by large pixel pitch (> 10 µm), low native fill factor (as low as ∼10%), and large size (up to 10 mm). In this work we report on the implementation of refractive microlenses by means of photoresist masters, used to fabricate molds for imprints of UV curable hybrid polymers deposited on SPAD arrays. Replications were successfully carried out for the first time, to the best of our knowledge, at wafer reticle level on different designs in the same technology and on single large SPAD arrays with very thin residual layers (∼10 µm), as needed for better efficiency at higher numerical aperture (NA > 0.25). In general, concentration factors within 15-20% of the simulation results were obtained for the smaller arrays (32×32 and 512×1), achieving for example an effective fill factor of 75.6-83.2% for a 28.5 µm pixel pitch with a native fill factor of 28%. A concentration factor up to 4.2 was measured on large 512×512 arrays with a pixel pitch of 16.38 µm and a native fill factor of 10.5%, whereas improved simulation tools could give a better estimate of the actual concentration factor. Spectral measurements were also carried out, resulting in good and uniform transmission in the visible and NIR.

2.
Nano Lett ; 21(16): 6756-6763, 2021 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-34398604

RESUMO

Multiply excited states in semiconductor quantum dots feature intriguing physics and play a crucial role in nanocrystal-based technologies. While photoluminescence provides a natural probe to investigate these states, room-temperature single-particle spectroscopy of their emission has proved elusive due to the temporal and spectral overlap with emission from the singly excited and charged states. Here, we introduce biexciton heralded spectroscopy enabled by a single-photon avalanche diode array based spectrometer. This allows us to directly observe biexciton-exciton emission cascades and measure the biexciton binding energy of single quantum dots at room temperature, even though it is well below the scale of thermal broadening and spectral diffusion. Furthermore, we uncover correlations hitherto masked in ensembles of the biexciton binding energy with both charge-carrier confinement and fluctuations of the local electrostatic potential. Heralded spectroscopy has the potential of greatly extending our understanding of charge-carrier dynamics in multielectron systems and of parallelization of quantum optics protocols.

3.
Artigo em Inglês | MEDLINE | ID: mdl-31156324

RESUMO

We report on SwissSPAD2, an image sensor with 512×512 photon-counting pixels, each comprising a single-photon avalanche diode (SPAD), a 1-bit memory, and a gating mechanism capable of turning the SPAD on and off, with a skew of 250ps and 344ps, respectively, for a minimum duration of 5.75ns. The sensor is designed to achieve a frame rate of up to 97,700 binary frames per second and sub-40ps gate shifts. By synchronizing it with a pulsed laser and using multiple successive overlapping gates, one can reconstruct a molecule's fluorescent response with picosecond temporal resolution. Thanks to the sensor's number of pixels (the largest to date) and the fully integrated gated operation, SwissSPAD2 enables widefield FLIM with an all-solid-state solution and at relatively high frame rates. This was demonstrated with preliminary results on organic dyes and semiconductor quantum dots using both decay fitting and phasor analysis. Furthermore, pixels with an exceptionally low dark count rate and high photon detection probability enable uniform and high quality imaging of biologically relevant fluorescent samples stained with multiple dyes. While future versions will feature the addition of microlenses and optimize firmware speed, our results open the way to low-cost alternatives to commercially available scientific time-resolved imagers.

4.
Opt Express ; 26(17): 22234-22248, 2018 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-30130919

RESUMO

Confocal microscopes use photomultiplier tubes and hybrid detectors due to their large dynamic range, which typically exceeds the one of single-photon avalanche diodes (SPADs). The latter, due to their photon counting operation, are usually limited to an output count rate to 1/Tdead. In this paper, we present a thorough analysis, which can actually be applied to any photon counting detector, on how to extend the SPAD dynamic range by exploiting the nonlinear photon response at high count rates and for different recharge mechanisms. We applied passive, active event-driven and clock-driven (i.e. clocked, following quanta image sensor response) recharge directly to the SPADs. The photon response, photon count standard deviation, signal-to-noise ratio and dynamic range were measured and compared to models. Measurements were performed with a CMOS SPAD array targeted for image scanning microscopy, featuring best-in-class 11 V excess bias, 55% peak photon detection probability at 520 nm and >40% from 440 to 640 nm. The array features an extremely low median dark count rate below 0.05 cps/µm2 at 9 V of excess bias and 0°C. We show that active event-driven recharge provides ×75 dynamic range extension and offers novel ways for high dynamic range imaging. When compared to the clock-driven recharge and the quanta image sensor approach, the dynamic range is extended by a factor of ×12.7-26.4. Additionally, for the first time, we evaluate the influence of clock-driven recharge on the SPAD afterpulsing.

5.
Sensors (Basel) ; 18(11)2018 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-30453648

RESUMO

Per-pixel time-to-digital converter (TDC) architectures have been exploited by single-photon avalanche diode (SPAD) sensors to achieve high photon throughput, but at the expense of fill factor, pixel pitch and readout efficiency. In contrast, TDC sharing architecture usually features high fill factor at small pixel pitch and energy efficient event-driven readout. While the photon throughput is not necessarily lower than that of per-pixel TDC architectures, since the throughput is not only decided by the TDC number but also the readout bandwidth. In this paper, a SPAD sensor with 32 × 32 pixels fabricated with a 180 nm CMOS image sensor technology is presented, where dynamically reallocating TDCs were implemented to achieve the same photon throughput as that of per-pixel TDCs. Each 4 TDCs are shared by 32 pixels via a collision detection bus, which enables a fill factor of 28% with a pixel pitch of 28.5 µm. The TDCs were characterized, obtaining the peak-to-peak differential and integral non-linearity of -0.07/+0.08 LSB and -0.38/+0.75 LSB, respectively. The sensor was demonstrated in a scanning light-detection-and-ranging (LiDAR) system equipped with an ultra-low power laser, achieving depth imaging up to 10 m at 6 frames/s with a resolution of 64 × 64 with 50 lux background light.

6.
ACS Nano ; 15(12): 19581-19587, 2021 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-34846120

RESUMO

Understanding exciton-exciton interaction in multiply excited nanocrystals is crucial to their utilization as functional materials. Yet, for lead halide perovskite nanocrystals, which are promising candidates for nanocrystal-based technologies, numerous contradicting values have been reported for the strength and sign of their exciton-exciton interaction. In this work, we unambiguously determine the biexciton binding energy in single cesium lead halide perovskite nanocrystals at room temperature. This is enabled by the recently introduced single-photon avalanche diode array spectrometer, capable of temporally isolating biexciton-exciton emission cascades while retaining spectral resolution. We demonstrate that CsPbBr3 nanocrystals feature an attractive exciton-exciton interaction, with a mean biexciton binding energy of 10 meV. For CsPbI3 nanocrystals, we observe a mean biexciton binding energy that is close to zero, and individual nanocrystals show either weakly attractive or weakly repulsive exciton-exciton interaction. We further show that, within ensembles of both materials, single-nanocrystal biexciton binding energies are correlated with the degree of charge-carrier confinement.

7.
Light Sci Appl ; 9: 12, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32025295

RESUMO

[This corrects the article DOI: 10.1038/s41377-019-0191-5.].

8.
Artigo em Inglês | MEDLINE | ID: mdl-33859449

RESUMO

Single-photon avalanche diode (SPAD) imagers can perform fast time-resolved imaging in a compact form factor, by exploiting the processing capability and speed of integrated CMOS electronics. Developments in SPAD imagers have recently made them compatible with widefield microscopy, thanks to array formats approaching one megapixel and sensitivity and noise levels approaching those of established technologies. In this paper, phasor-based FLIM is demonstrated with a gated binary 512×512 SPAD imager, which can operate with a gate length as short as 5.75 ns, a minimum gate step of 17.9 ps, and up to 98 kfps readout rate (1-bit frames). Lifetimes of ATTO 550 and Rhodamine 6G (R6G) solutions were measured across a 472×256 sub-array using phasor analysis, acquiring data by shifting a 13.1 ns gate window across the 50 ns laser period. The measurement accuracy obtained when employing such a scheme based on long, overlapping gates was validated by comparison with TCSPC measurements and fitting analysis results based on a standard Levenberg-Marquardt algorithm (>90% accuracy for the lifetime of R6G and ATTO 550). This demonstrates the ability of the proposed method to measure short lifetimes without minimum gate length requirements. The FLIM frame rate of the overall system can be increased up to a few fps for phasor-based widefield FLIM (moving closer to real-time operation) by FPGA-based parallel computation with continuous acquisition at the full speed of 98 kfps.

9.
Light Sci Appl ; 8: 87, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31645931

RESUMO

Single-photon avalanche diode (SPAD) arrays are solid-state detectors that offer imaging capabilities at the level of individual photons, with unparalleled photon counting and time-resolved performance. This fascinating technology has progressed at a very fast pace in the past 15 years, since its inception in standard CMOS technology in 2003. A host of architectures have been investigated, ranging from simpler implementations, based solely on off-chip data processing, to progressively "smarter" sensors including on-chip, or even pixel level, time-stamping and processing capabilities. As the technology has matured, a range of biophotonics applications have been explored, including (endoscopic) FLIM, (multibeam multiphoton) FLIM-FRET, SPIM-FCS, super-resolution microscopy, time-resolved Raman spectroscopy, NIROT and PET. We will review some representative sensors and their corresponding applications, including the most relevant challenges faced by chip designers and end-users. Finally, we will provide an outlook on the future of this fascinating technology.

10.
Sci Rep ; 7: 44108, 2017 03 13.
Artigo em Inglês | MEDLINE | ID: mdl-28287122

RESUMO

sCMOS imagers are currently utilized (replacing EMCCD imagers) to increase the acquisition speed in super resolution localization microscopy. Single-photon avalanche diode (SPAD) imagers feature frame rates per bit depth comparable to or higher than sCMOS imagers, while generating microsecond 1-bit-frames without readout noise, thus paving the way to in-depth time-resolved image analysis. High timing resolution can also be exploited to explore fluorescent dye blinking and other photophysical properties, which can be used for dye optimization. We present the methodology for the blinking analysis of fluorescent dyes on experimental data. Furthermore, the recent use of microlenses has enabled a substantial increase of SPAD imager overall sensitivity (12-fold in our case), reaching satisfactory values for sensitivity-critical applications. This has allowed us to record the first super resolution localization microscopy results obtained with a SPAD imager, with a localization uncertainty of 20 nm and a resolution of 80 nm.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA