Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Sensors (Basel) ; 18(9)2018 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-30241279

RESUMO

One of the most challenging areas of sensor development for nuclear medicine is the design of proton therapy monitoring systems. Sensors are operated in a high detection rate regime in beam-on conditions. We realized a prototype of a monitoring system for proton therapy based on the technique of positron emission tomography. We used the Plug and Imaging (P&I) technology in this application. This sensing system includes LYSO/silicon photomultiplier (SiPM) detection elements, fast digital multi voltage threshold (MVT) readout electronics and dedicated image reconstruction algorithms. In this paper, we show that the P&I sensor system has a uniform response and is controllable in the experimental conditions of the proton therapy room. The prototype of PET monitoring device based on the P&I sensor system has an intrinsic experimental spatial resolution of approximately 3 mm (FWHM), obtained operating the prototype both during the beam irradiation and right after it. The count-rate performance of the P&I sensor approaches 5 Mcps and allows the collection of relevant statistics for the nuclide analysis. The measurement of both the half life and the relative abundance of the positron emitters generated in the target volume through irradiation of 10 10 protons in approximately 15 s is performed with 0.5% and 5 % accuracy, respectively.


Assuntos
Tomografia por Emissão de Pósitrons , Terapia com Prótons/instrumentação , Terapia com Prótons/métodos , Algoritmos , Meia-Vida , Processamento de Imagem Assistida por Computador , Prótons
2.
Phys Med Biol ; 69(16)2024 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-39053501

RESUMO

Objective. Low-count positron emission tomography (PET) imaging is an efficient way to promote more widespread use of PET because of its short scan time and low injected activity. However, this often leads to low-quality PET images with clinical image reconstruction, due to high noise and blurring effects. Existing PET image restoration (IR) methods hinder their own restoration performance due to the semi-convergence property and the lack of suitable denoiser prior.Approach. To overcome these limitations, we propose a novel deep plug-and-play IR method called Deep denoiser Prior driven Relaxed Iterated Tikhonov method (DP-RI-Tikhonov). Specifically, we train a deep convolutional neural network denoiser to generate a flexible deep denoiser prior to handle high noise. Then, we plug the deep denoiser prior as a modular part into a novel iterative optimization algorithm to handle blurring effects and propose an adaptive parameter selection strategy for the iterative optimization algorithm.Main results. Simulation results show that the deep denoiser prior plays the role of reducing noise intensity, while the novel iterative optimization algorithm and adaptive parameter selection strategy can effectively eliminate the semi-convergence property. They enable DP-RI-Tikhonov to achieve an average quantitative result (normalized root mean square error, structural similarity) of (0.1364, 0.9574) at the stopping iteration, outperforming a conventional PET IR method with an average quantitative result of (0.1533, 0.9523) and a state-of-the-art deep plug-and-play IR method with an average quantitative result of (0.1404, 0.9554). Moreover, the advantage of DP-RI-Tikhonov becomes more obvious at the last iteration. Experiments on six clinical whole-body PET images further indicate that DP-RI-Tikhonov successfully reduces noise intensity and recovers fine details, recovering sharper and more uniform images than the comparison methods.Significance. DP-RI-Tikhonov's ability to reduce noise intensity and effectively eliminate the semi-convergence property overcomes the limitations of existing methods. This advancement may have substantial implications for other medical IR.


Assuntos
Processamento de Imagem Assistida por Computador , Tomografia por Emissão de Pósitrons , Razão Sinal-Ruído , Tomografia por Emissão de Pósitrons/métodos , Processamento de Imagem Assistida por Computador/métodos , Humanos , Aprendizado Profundo , Imagens de Fantasmas
3.
Front Plant Sci ; 13: 882382, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35941942

RESUMO

Time activity curve (TAC) signal processing in plant positron emission tomography (PET) is a frontier nuclear science technique to bring out the quantitative fluid dynamic (FD) flow parameters of the plant vascular system and generate knowledge on crops and their sustainable management, facing the accelerating global climate change. The sparse space-time sampling of the TAC signal impairs the extraction of the FD variables, which can be determined only as averaged values with existing techniques. A data-driven approach based on a reliable FD model has never been formulated. A novel sparse data assimilation digital signal processing method is proposed, with the unique capability of a direct computation of the dynamic evolution of noise correlations between estimated and measured variables, by taking into explicit account the numerical diffusion due to the sparse sampling. The sequential time-stepping procedure estimates the spatial profile of the velocity, the diffusion coefficient and the compartmental exchange rates along the plant stem from the TAC signals. To illustrate the performance of the method, we report an example of the measurement of transport mechanisms in zucchini sprouts.

4.
Cell Biosci ; 12(1): 102, 2022 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-35794650

RESUMO

BACKGROUND: Parkinson's Disease (PD) is the second most frequent degenerative disorder, the risk of which increases with age. A preclinical PD diagnostic test does not exist. We identify PD blood metabolites and metabolic pathways significantly correlated with age to develop personalized age-dependent PD blood biomarkers. RESULTS: We found 33 metabolites producing a receiver operating characteristic (ROC) area under the curve (AUC) value of 97%. PCA revealed that they belong to three pathways with distinct age-dependent behavior: glycine, threonine and serine metabolism correlates with age only in PD patients; unsaturated fatty acids biosynthesis correlates with age only in a healthy control group; and, finally, tryptophan metabolism characterizes PD but does not correlate with age. CONCLUSIONS: The targeted analysis of the blood metabolome proposed in this paper allowed to find specific age-related metabolites and metabolic pathways. The model offers a promising set of blood biomarkers for a personalized age-dependent approach to the early PD diagnosis.

5.
EJNMMI Res ; 11(1): 40, 2021 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-33881633

RESUMO

BACKGROUND: When Alzheimer's disease (AD) is occurring at an early onset before 65 years old, its clinical course is generally more aggressive than in the case of a late onset. We aim at identifying [[Formula: see text]F]florbetaben PET biomarkers sensitive to differences between early-onset Alzheimer's disease (EOAD) and late-onset Alzheimer's disease (LOAD). We conducted [[Formula: see text]F]florbetaben PET/CT scans of 43 newly diagnosed AD subjects. We calculated 93 textural parameters for each of the 83 Hammers areas. We identified 41 independent principal components for each brain region, and we studied their Spearman correlation with the age of AD onset, by taking into account multiple comparison corrections. Finally, we calculated the probability that EOAD and LOAD patients have different amyloid-[Formula: see text] ([Formula: see text]) deposition by comparing the mean and the variance of the significant principal components obtained in the two groups with a 2-tailed Student's t-test. RESULTS: We found that four principal components exhibit a significant correlation at a 95% confidence level with the age of onset in the left lateral part of the anterior temporal lobe, the right anterior orbital gyrus of the frontal lobe, the right lateral orbital gyrus of the frontal lobe and the left anterior part of the superior temporal gyrus. The data are consistent with the hypothesis that EOAD patients have a significantly different [[Formula: see text]F]florbetaben uptake than LOAD patients in those four brain regions. CONCLUSIONS: Early-onset AD implies a very irregular pattern of [Formula: see text] deposition. The authors suggest that the identified textural features can be used as quantitative biomarkers for the diagnosis and characterization of EOAD patients.

6.
Front Aging Neurosci ; 13: 759983, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34992526

RESUMO

Chronic sleep insufficiency is becoming a common issue in the young population nowadays, mostly due to life habits and work stress. Studies in animal models of neurological diseases reported that it would accelerate neurodegeneration progression and exacerbate interstitial metabolic waste accumulation in the brain. In this paper, we study whether chronic sleep insufficiency leads to neurodegenerative diseases in young wild-type animals without a genetic pre-disposition. To this aim, we modeled chronic sleep fragmentation (SF) in young wild-type mice. We detected pathological hyperphosphorylated-tau (Ser396/Tau5) and gliosis in the SF hippocampus. 18F-labeled fluorodeoxyglucose positron emission tomography scan (18F-FDG-PET) further revealed a significant increase in brain glucose metabolism, especially in the hypothalamus, hippocampus and amygdala. Hippocampal RNAseq indicated that immunological and inflammatory pathways were significantly altered in 1.5-month SF mice. More interestingly, differential expression gene lists from stress mouse models showed differential expression patterns between 1.5-month SF and control mice, while Alzheimer's disease, normal aging, and APOEε4 mutation mouse models did not exhibit any significant pattern. In summary, 1.5-month sleep fragmentation could generate AD-like pathological changes including tauopathy and gliosis, mainly linked to stress, as the incremented glucose metabolism observed with PET imaging suggested. Further investigation will show whether SF could eventually lead to chronic neurodegeneration if the stress condition is prolonged in time.

7.
Front Plant Sci ; 12: 736221, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35116047

RESUMO

Positron Emission Tomography is a non-disruptive and high-sensitive digital imaging technique which allows to measure in-vivo and non invasively the changes of metabolic and transport mechanisms in plants. When it comes to the early assessment of stress-induced alterations of plant functions, plant PET has the potential of a major breakthrough. The development of dedicated plant PET systems faces a series of technological and experimental difficulties, which make conventional clinical and preclinical PET systems not fully suitable to agronomy. First, the functional and metabolic mechanisms of plants depend on environmental conditions, which can be controlled during the experiment if the scanner is transported into the growing chamber. Second, plants need to be imaged vertically, thus requiring a proper Field Of View. Third, the transverse Field of View needs to adapt to the different plant shapes, according to the species and the experimental protocols. In this paper, we perform a simulation study, proposing a novel design of dedicated plant PET scanners specifically conceived to address these agronomic issues. We estimate their expected sensitivity, count rate performance and spatial resolution, and we identify these specific features, which need to be investigated when realizing a plant PET scanner. Finally, we propose a novel approach to the measurement and verification of the performance of plant PET systems, including the design of dedicated plant phantoms, in order to provide a standard evaluation procedure for this emerging digital imaging agronomic technology.

8.
JCI Insight ; 2(12)2017 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-28614795

RESUMO

The tumor microenvironment imposes physical and functional constraints on the antitumor efficacy of adoptive T cell immunotherapy. Preclinical testing of different T cell preparations can help in the selection of efficient immune therapies, but in vivo models are expensive and cumbersome to develop, while classical in vitro 2D models cannot recapitulate the spatiotemporal dynamics experienced by T cells targeting cancer. Here, we describe an easily customizable 3D model, in which the tumor microenvironment conditions are modulated and the functionality of different T cell preparations is tested. We incorporate human cancer hepatocytes as a single cell or as tumor cell aggregates in a 3D collagen gel region of a microfluidic device. Human T cells engineered to express tumor-specific T cell receptors (TCR-T cells) are then added in adjacent channels. The TCR-T cells' ability to migrate and kill the tumor target and the profile of soluble factors were investigated under conditions of varying oxygen levels and in the presence of inflammatory cytokines. We show that only the 3D model detects the effect that oxygen levels and the inflammatory environment impose on engineered TCR-T cell function, and we also used the 3D microdevice to analyze the TCR-T cell efficacy in an immunosuppressive scenario. Hence, we show that our microdevice platform enables us to decipher the factors that can alter T cell function in 3D and can serve as a preclinical assay to tailor the most efficient immunotherapy configuration for a specific therapeutic goal.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA