Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Exp Neurol ; 323: 113074, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31655047

RESUMO

Nerve graft reconstruction of gap defects may result in poor clinical outcomes, particularly with long regeneration distances. Electrical stimulation (ES) of nerves may improve outcomes in such patients. A single session of ES at 20 Hz for 1 h significantly enhances axon regeneration in animals and human subjects after nerve crush or nerve transection and repair. The objectives of this study were to evaluate if ES enhances axon regeneration through nerve grafts and if there is added benefit of a second, delayed session of ES (serial ES) on axon regeneration as compared to a single session only of ES. In female rats, a gap defect was created in the hindlimb common peroneal (CP) nerve and immediately reconstructed with a 10 mm nerve autograft (Experiment 1) or a 20 mm nerve autograft (Experiment 2). In Experiment 1, rats were randomized to 1 h of CP nerve ES or sham stimulation. In Experiment 2, rats were randomized to control (sham ES + sham ES), single ES (ES + sham ES), or serial ES (ES + ES), which consisted of an initial 1 h session of either ES or sham stimulation of the CP nerve, followed by a second 1 h session of ES or sham stimulation of the CP nerve 4 weeks later. In both experiments, after a 6 week period of nerve regeneration, CP neurons that had regenerated axons distal to the autograft were retrograde labelled for enumeration, and the CP nerve distal to the autograft was harvested for histomorphometry. In Experiment 1, rats that received CP nerve ES had statistically significantly more motor (p < .05) and sensory (p < .05) neurons that regenerated axons distal to the 10 mm nerve autograft, with more myelinated axons on histomorphometry (p < .001). Similarly, in Experiment 2, significantly more motor (p < .01) and sensory (p < .05) neurons regenerated axons distal to the 20 mm nerve autograft after a single session or two sessions of CP nerve ES. There was no significant difference in the number of regenerated motor or sensory neurons between rats with 20 mm CP nerve autografts receiving either one or two sessions of CP nerve ES (p > .05). In conclusion, a single session of ES enhances axon regeneration following nerve autografting with no added effect of a second, delayed session of ES. These findings support previous studies in animals and humans of the robust effect of a single session of ES in promoting nerve regeneration following injury and repair.


Assuntos
Axônios/fisiologia , Estimulação Elétrica/métodos , Regeneração Nervosa/fisiologia , Traumatismos dos Nervos Periféricos/cirurgia , Nervo Fibular/transplante , Animais , Autoenxertos , Feminino , Ratos , Ratos Sprague-Dawley , Recuperação de Função Fisiológica/fisiologia , Transplante Autólogo
2.
Invest Ophthalmol Vis Sci ; 59(11): 4345-4354, 2018 09 04.
Artigo em Inglês | MEDLINE | ID: mdl-30193306

RESUMO

Purpose: Corneal neurotization is a novel surgical procedure to reinnervate the cornea in patients with neurotrophic keratopathy (NK). We developed a rat model of NK and corneal neurotization to further investigate corneal neurotization as a treatment to improve maintenance and healing of the corneal epithelium. Methods: Thy1-GFP+ Sprague Dawley rats were used to develop the model. Corneal denervation was performed via stereotactic electrocautery of the ophthalmomaxillary branch of the trigeminal nerve. Corneal neurotization was performed by guiding donor sensory axons from the contralateral infraorbital nerve into the cornea via two nerve grafts. Corneal imaging, including nerve density measurements and retrograde labeling were performed to validate the model. In vivo assays of corneal maintenance and repair were used to examine whether treatment with corneal neurotization improved healing in rats with NK. Results: Corneal neurotization significantly increased corneal axon density in rats with NK (P < 0.01). Retrograde labeling of the cornea in rats with corneal neurotization labeled 206 ± 82 neurons in the contralateral trigeminal ganglion, confirming axons reinnervating the cornea derived from the contralateral infraorbital nerve. Corneal reinnervation after corneal neurotization improved corneal epithelial maintenance and corneal healing after injury (P < 0.01). Conclusions: Donor nerve fibers reinnervate the insensate cornea after corneal neurotization and significantly improve corneal maintenance and repair. This model can be used to further investigate how corneal neurotization influences epithelial maintenance and repair in the context of NK.


Assuntos
Córnea/inervação , Distrofias Hereditárias da Córnea/cirurgia , Modelos Animais de Doenças , Regeneração Nervosa/fisiologia , Transferência de Nervo , Doenças do Nervo Trigêmeo/cirurgia , Nervo Trigêmeo/fisiologia , Animais , Distrofias Hereditárias da Córnea/fisiopatologia , Denervação , Masculino , Ratos , Ratos Sprague-Dawley , Doenças do Nervo Trigêmeo/fisiopatologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA