Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
J Cell Biochem ; 125(3): e30533, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38345373

RESUMO

Dihydrofolate reductase (DHFR) is a ubiquitous enzyme that regulates the biosynthesis of tetrahydrofolate among various species of Plasmodium parasite. It is a validated target of the antifolate drug pyrimethamine (Pyr) in Plasmodium falciparum (Pf), but its clinical efficacy has been hampered due to the emergence of drug resistance. This has made the attempt to screen Food & Drug Administration-approved drugs against wild- and mutant PfDHFR by employing an in-silico pipeline to identify potent candidates. The current study has followed a virtual screening approach for identifying potential DHFR inhibitors from DrugBank database, based on a structure similarity search of candidates, followed by absorption, distribution, metabolism, and excretion estimation. The screened drugs were subjected to various parameters like docking, molecular mechanics with generalized born and surface area solvation calculations, and molecular simulations. We have thus identified two potential drug candidates, duloxetine and guanethidine, which can be repurposed to be tested for their efficacy against wild type and drug resistant falciparum malaria.


Assuntos
Antimaláricos , Antagonistas do Ácido Fólico , Malária , Humanos , Antimaláricos/farmacologia , Antimaláricos/química , Tetra-Hidrofolato Desidrogenase/genética , Tetra-Hidrofolato Desidrogenase/química , Tetra-Hidrofolato Desidrogenase/metabolismo , Preparações Farmacêuticas , Reposicionamento de Medicamentos , Malária/tratamento farmacológico , Antagonistas do Ácido Fólico/farmacologia , Antagonistas do Ácido Fólico/química , Resistência a Medicamentos , Ácido Fólico
2.
Malar J ; 23(1): 50, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38360708

RESUMO

BACKGROUND: Despite the progress made in this decade towards malaria elimination, it remains a significant public health concern in India and many other countries in South Asia and Asia Pacific region. Understanding the historical trends of malaria incidence in relation to various commodity and policy interventions and identifying the factors associated with its occurrence can inform future intervention strategies for malaria elimination goals. METHODS: This study analysed historical malaria cases in India from 1990 to 2022 to assess the annual trends and the impact of key anti-malarial interventions on malaria incidence. Factors associated with malaria incidence were identified using univariate and multivariate linear regression analyses. Generalized linear, smoothing, autoregressive integrated moving averages (ARIMA) and Holt's models were used to forecast malaria cases from 2023 to 2030. RESULTS: The reported annual malaria cases in India during 1990-2000 were 2.38 million, which dropped to 0.73 million cases annually during 2011-2022. The overall reduction from 1990 (2,018,783) to 2022 (176,522) was 91%. The key interventions of the Enhanced Malaria Control Project (EMCP), Intensified Malaria Control Project (IMCP), use of bivalent rapid diagnostic tests (RDT-Pf/Pv), artemisinin-based combination therapy (ACT), and involvement of the Accredited Social Health Activists (ASHAs) as front-line workers were found to result in the decline of malaria significantly. The ARIMA and Holt's models projected a continued decline in cases with the potential for reaching zero indigenous cases by 2027-2028. Important factors influencing malaria incidence included tribal population density, literacy rate, health infrastructure, and forested and hard-to-reach areas. CONCLUSIONS: Studies aimed at assessing the impact of major commodity and policy interventions on the incidence of disease and studies of disease forecasting will inform programmes and policymakers of steps needed during the last mile phase to achieve malaria elimination. It is proposed that these time series and disease forecasting studies should be performed periodically using granular (monthly) and meteorological data to validate predictions of prior studies and suggest any changes needed for elimination efforts at national and sub-national levels.


Assuntos
Antimaláricos , Malária , Humanos , Fatores de Tempo , Objetivos , Malária/epidemiologia , Malária/prevenção & controle , Malária/diagnóstico , Antimaláricos/uso terapêutico , Índia/epidemiologia
3.
J Vector Borne Dis ; 61(2): 151-157, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38922649

RESUMO

BACKGROUND OBJECTIVES: Despite significant progress in malaria control throughout India, Chhattisgarh state continues to be a significant contributor to both malaria morbidity and mortality. This study aims to identify key factors associated with malaria endemicity, with a goal of focusing on these factors for malaria elimination by 2030. METHODS: We employed an analysis and narrative review methodology to summarize the existing evidence on malaria epidemiology in Chhattisgarh. Data encompassing environmental conditions, dominant malaria vectors and their distribution, and the impact of previous interventions on malaria control, were extracted from published literature using PubMed and Google Scholar. This information was subsequently correlated with malaria incidence data using appropriate statistical and geographical methods. RESULTS: Much of the malaria burden in Chhattisgarh state is concentrated in a few specific districts. The primary malaria vectors in these regions are Anopheles culicifacies and An. fluviatilis. High transmission areas are found in tribal belts which are challenging to access and are characterized by densely forested areas that provide a conducive habitat for malaria vectors. INTERPRETATION CONCLUSION: Conducive environmental conditions characterized by high forest cover, community behavior, and insurgency, contribute to high malaria endemicity in the area. Challenges include insecticide resistance in malaria vectors and asymptomatic malaria. Allocating additional resources to high-endemic districts is crucial. Innovative and focused malaria control programs of the country, such as DAMAN and Malaria Mukt Abhiyan, hold immense importance.


Assuntos
Anopheles , Malária , Mosquitos Vetores , Índia/epidemiologia , Humanos , Malária/prevenção & controle , Malária/epidemiologia , Animais , Anopheles/parasitologia , Anopheles/fisiologia , Mosquitos Vetores/parasitologia , Controle de Mosquitos/métodos , Erradicação de Doenças/métodos , Incidência , Resistência a Inseticidas
4.
J Vector Borne Dis ; 61(1): 81-89, 2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-38648409

RESUMO

BACKGROUND OBJECTIVES: Malaria due to Plasmodium falciparum (Pf) remains a major public threat in India. Artemisinin-based combination therapy (ACT) has been the country's first-line drug for uncomplicated Pf malaria. In 2013-2014, Artesunate plus sulfadoxine (AS+SP) was replaced by Artemether Lumefantrine (AL) as the first- line antimalarial in North East (NE) states of the country which are endemic for Pf malaria. Regular monitoring of antimalarial drugs is of utmost importance to achieve the goal of elimination. This study aimed to assess the efficacy and safety of ACT for treating uncomplicated Pf malaria in the NE states of India. METHODS: A prospective study of 28-day follow-up was conducted to monitor the efficacy and safety of AL from 2018-2019 in four districts, Udalgiri, Meghalaya, Lawngtlai, and Dhalai of NE, India. The clinical and parasitological response and the polymorphism analysis of the Pfdhps, P/dhfr, and Pfkelch 13 gene were evaluated. RESULTS: A total of 234 patients were enrolled in the study out of 216 patients who completed the follow-up to 28 days. One-hundred percent adequate clinical and parasitological responses (ACPR) were observed with polymerase chain reaction (PCR) correction. The genotype results suggest no recrudescence in the treatment-failure patients. The classical single nucleotide polymorphisms (SNP) in the Pfdhfr gene was S108N (94.9%), followed by C59R (91.5%), whereas, in the Pfdhps gene, the common SNP was A437G (79.6%), followed by S3436A. No associated or validated mutations were found in the propeller region of the PfKelch13 gene. INTERPRETATION CONCLUSION: AL was efficacious and safe in uncomplicated P. falciparum malaria in North East India. In contrast, mutations in the genes responsible for sulfadoxine and pyrimethamine resistance have been fixed in northeast India's population.


Assuntos
Antimaláricos , Artemisininas , Quimioterapia Combinada , Malária Falciparum , Plasmodium falciparum , Malária Falciparum/tratamento farmacológico , Malária Falciparum/parasitologia , Índia , Humanos , Artemisininas/uso terapêutico , Artemisininas/efeitos adversos , Antimaláricos/uso terapêutico , Antimaláricos/administração & dosagem , Antimaláricos/efeitos adversos , Feminino , Masculino , Plasmodium falciparum/genética , Plasmodium falciparum/efeitos dos fármacos , Estudos Prospectivos , Adulto , Adulto Jovem , Adolescente , Pessoa de Meia-Idade , Resultado do Tratamento , Criança , Pré-Escolar , Combinação Arteméter e Lumefantrina/uso terapêutico , Sulfadoxina/uso terapêutico , Combinação de Medicamentos
5.
Malar J ; 22(1): 375, 2023 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-38072967

RESUMO

BACKGROUND: Resistance against artemisinin-based combination therapy is one of the challenges to malaria control and elimination globally. Mutations in different genes (Pfdhfr, Pfdhps, Pfk-13 and Pfmdr1) confer resistance to artesunate and sulfadoxine-pyrimethamine (AS + SP) were analysed from Mandla district, Madhya Pradesh, to assess the effectiveness of the current treatment regimen against uncomplicated Plasmodium falciparum. METHODS: Dried blood spots were collected during the active fever survey and mass screening and treatment activities as part of the Malaria Elimination Demonstration Project (MEDP) from 2019 to 2020. Isolated DNA samples were used to amplify the Pfdhfr, Pfdhps, Pfk13 and Pfmdr1 genes using nested PCR and sequenced for mutation analysis using the Sanger sequencing method. RESULTS: A total of 393 samples were subjected to PCR amplification, sequencing and sequence analysis; 199, 215, 235, and 141 samples were successfully sequenced for Pfdhfr, Pfdhps, Pfk13, Pfmdr1, respectively. Analysis revealed that the 53.3% double mutation (C59R, S108N) in Pfdhfr, 89.3% single mutation (G437A) in Pfdhps, 13.5% single mutants (N86Y), and 51.1% synonymous mutations in Pfmdr1 in the study area. Five different non-synonymous and two synonymous point mutations found in Pfk13, which were not associated to artemisinin resistance. CONCLUSION: The study has found that mutations linked to SP resistance are increasing in frequency, which may reduce the effectiveness of this drug as a future partner in artemisinin-based combinations. No evidence of mutations linked to artemisinin resistance in Pfk13 was found, suggesting that parasites are sensitive to artemisinin derivatives in the study area. These findings are a baseline for routine molecular surveillance to proactively identify the emergence and spread of artemisinin-resistant parasites.


Assuntos
Antimaláricos , Artemisininas , Malária Falciparum , Malária , Humanos , Plasmodium falciparum , Antimaláricos/farmacologia , Antimaláricos/uso terapêutico , Pirimetamina/uso terapêutico , Sulfadoxina/uso terapêutico , Artemisininas/farmacologia , Artemisininas/uso terapêutico , Malária/tratamento farmacológico , Biomarcadores , Resistência a Medicamentos/genética , Índia , Combinação de Medicamentos , Malária Falciparum/parasitologia , Proteínas de Protozoários/genética , Proteínas de Protozoários/uso terapêutico
6.
J Biomol Struct Dyn ; : 1-16, 2024 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-38197419

RESUMO

Antimalarial drug resistance poses one of the greatest threats to malaria treatment, resulting in increased morbidity and mortality. Heme Detoxification Protein (HDP) is among the essential hemoglobinases of P. falciparum (Pf), a vital molecular target for the treatment of malaria. In this study, we utilized the virtual screening workflow tool of the Schrodinger suite to find the best hits for the PfHDP from the DrugBank library. A total of 14,942 compounds were identified against the PfHDP. The top compounds with the highest docking scores and least energy scores were subjected to molecular simulations for 500 nanosecond to check the stability of the protein-drug complexes. The top three DrugBank compounds were found to be stable over 500 ns, namely DB09298 (silibinin), DB07426 (1-Hydroxy-2-(1,1':3',1''-Terphenyl-3-Yloxy) Ethane-1,1-Diyl] Bis (Phosphonic Acid), and DB07410 [(2-(3-Dibenzofuran-4-yl-Phenyl)-1-Hydroxy-1-Phosphono-Ethyl]-Phosphonic Acid). Overall analysis suggests that the top three compounds, DB09298, DB07426, and DB07410, have good stability for 500 ns. Their scaffolds can be used to design and develop new analogs of the target HDP protein. Silibinin, the anti-cancer drug, was found to be highly stable for the entire simulation period as compared to the other compounds. DB07426 shows its therapeutic effect on bones, especially in the treatment of osteoporosis, and DB07410 has anti-tumor, antibacterial, anti-oxidative, and anti-viral activities. All three compounds can be considered for repurposing as antimalarial drugs to evaluate the binding capacity or inhibition potential of these compounds. Further in-vivo and in-vitro analysis against the PfHDP protein should be conducted.Communicated by Ramaswamy H. Sarma.

7.
Am J Trop Med Hyg ; 110(5): 921-924, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38579702

RESUMO

Malaria elimination is one of the top health care priorities in India, necessitating accessible and accurate diagnosis for effective treatment. A malaria slide bank in India is a collection of quality-controlled malaria-positive and -negative slides and is considered a vital asset for quality diagnosis. The collection of blood samples, preparation of blood smears, staining, quality control, molecular characterizations, and slide validation were carried out according to standard operating procedures in accordance with the WHO reference laboratory. The true count and parasite density per microliter were computed in accordance with WHO guidelines. Over 27 months, 48 batches (8,196 slides) were prepared. Overall, the majority of slide batches were Plasmodium vivax (45.9%; 22/48), followed by Plasmodium falciparum (25%; 12/48), malaria-negative infections (25%; 12/48), and mixed infections (4.1%; 2/48). All 48 batches passed internal validation by WHO-certified level-1 microscopists. For a batch, the true count was the median of the validators' counts (range, 111-280,795 parasites/µL). Except for mixed infections, the PCR results agreed with the verified microscopy results. Malaria slide bank slides would be a valuable tool for quality control, assurance, and microscopist training.


Assuntos
Microscopia , Plasmodium vivax , Controle de Qualidade , Índia/epidemiologia , Humanos , Microscopia/métodos , Microscopia/normas , Plasmodium vivax/isolamento & purificação , Malária Vivax/diagnóstico , Malária Vivax/epidemiologia , Malária Falciparum/diagnóstico , Malária Falciparum/epidemiologia , Malária/diagnóstico , Malária/epidemiologia , Plasmodium falciparum/isolamento & purificação , Plasmodium falciparum/genética , Bancos de Espécimes Biológicos
8.
Front Public Health ; 12: 1363736, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38655519

RESUMO

India contributed approximately 66% of the malaria cases in the WHO South-East Asia region in 2022. In India, approximately 44% of cases have been reported to be disproportionately contributed by approximately 27 districts. A comparative analysis of reported malaria cases between January 2017 and December 2022 was performed in Mandla district, which is the site of a model malaria elimination demonstration project (MEDP) in Madhya Pradesh (MP), India. Compared to 2017, the decrease in malaria cases in Mandla from 2018 to 2022 was higher than MP and the rest of the country. The reduction of cases was significant in 2018, 2019, and 2021 (p < 0.01) (Mandla vs. MP) and was highly significant during 2018-2022 (p < 0.001) (Mandla vs. India). Robust surveillance and real-time data-based decisions accompanied by appropriate management, operational controls, and independent reviews, all designed for resource optimisation, were the reasons for eliminating indigenous malaria in Mandla district. The increase in infection rates during the months immediately following rains suggests that surveillance, vector control, and case management efforts should be specifically intensified for eliminating imported and indigenous cases in the near-elimination districts to work towards achieving the national elimination goal of 2030.


Assuntos
Erradicação de Doenças , Malária , Índia/epidemiologia , Humanos , Erradicação de Doenças/estatística & dados numéricos , Malária/prevenção & controle , Malária/epidemiologia
10.
Glob Pediatr ; 6: None, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38440360

RESUMO

Purpose: The pediatric population, especially under-five children, is highly susceptible to malaria and accounts for 76 % of global malaria deaths according to the World Malaria Report 2022. The purpose of this manuscript is to discuss the various factors involved in the susceptibility of the pediatric population to Malaria and the importance of this age group for malaria elimination. Methodology: Data on pediatric malaria epidemiology that includes prevalence, risk factors, immune factors, socioeconomic factors, control methods, etc. were extracted from published literature using PubMed and Google Scholar. This data was further correlated with malaria incidence data from the World Health Organization (WHO) and the National Center for Vector Borne Diseases Control (NCVBDC). Results: The younger age group is vulnerable to severe malaria due to an immature immune system. The risk of infection and clinical disease increases after the waning of maternal immunity. In the initial years of life, the developing brain is more susceptible to malaria infection and its after-effects. The pediatric population may act as a malaria transmission reservoir due to parasite density and asymptomatic infections. WHO recommended RTS,S/AS01 has limitations and may not be applicable in all settings to propel malaria elimination. Conclusion: The diagnosis of malaria is based on clinical suspicion and confirmed with microscopy and/or rapid diagnostic testing. The school-age pediatric population serves as a transmission reservoir in the form of asymptomatic malaria since they have acquired some immunity due to exposure in early childhood. Targeting the hidden reservoir in the pediatric population and protecting this vulnerable group will be essential for malaria elimination from the countries targeting elimination.

11.
Curr Comput Aided Drug Des ; 12(4): 282-293, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27449897

RESUMO

BACKGROUND: Plasmodium falciparum leucyl aminopeptidase (PfA-M17) regulates the intracellular pool of amino acids required for the growth and development of parasites. Thus, PfA-M17 is a promising target for anti-malarial drug development. METHOD: In the present study, structure-based drug design was used to identify novel PfA-M17 inhibitors, which were subsequently validated by in vitro PfA-M17 and human LAP3 enzyme inhibition assay. A library of 3,147,882 compounds was screened using receptor-based virtual screening against the active site of PfA-M17, and three levels of accuracy were used: high-throughput virtual screening, gridbased ligand docking with energetics (Glide standard precision) and Glide extra precision. RESULTS: Seventeen screened compounds were selected and tested in the rPfA-M17 enzyme inhibition assay. Of these nine compounds were found to be effective inhibitors. To test the target activity, all nine PfA-M17 inhibitors were tested against rhLAP3, the human homolog of PfA-M17. One compound (compound 2) was found to be moderately effective against PfA-M17 (Ki = 287 µM) with limited inhibitory activity against hLAP3 (Ki of 4,464 µM). Subsequently, induced fit docking and pharmacophore modelling were used to further understand more precise ligand-protein interactions in the protein-inhibitor complexes. CONCLUSION: Among the 9 effective PfA-M17 inhibitors, 5 compounds were found effective in the P. falciparum schizont maturation inhibition (SMI) assay. A good correlation (r =0.83) was observed between the rPfA-M17 enzyme inhibition concentration and SMI assay.


Assuntos
Antimaláricos/farmacologia , Desenho de Fármacos , Leucil Aminopeptidase/antagonistas & inibidores , Malária Falciparum/tratamento farmacológico , Plasmodium falciparum/efeitos dos fármacos , Inibidores de Proteases/farmacologia , Proteínas de Protozoários/antagonistas & inibidores , Antimaláricos/química , Antimaláricos/metabolismo , Sítios de Ligação , Ensaios de Triagem em Larga Escala , Cinética , Leucil Aminopeptidase/química , Leucil Aminopeptidase/metabolismo , Ligantes , Malária Falciparum/parasitologia , Simulação de Acoplamento Molecular , Plasmodium falciparum/enzimologia , Inibidores de Proteases/química , Inibidores de Proteases/metabolismo , Ligação Proteica , Conformação Proteica , Proteínas de Protozoários/química , Proteínas de Protozoários/metabolismo , Bibliotecas de Moléculas Pequenas , Relação Estrutura-Atividade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA