RESUMO
A stochastic background of gravitational waves is expected to arise from a superposition of a large number of unresolved gravitational-wave sources of astrophysical and cosmological origin. It should carry unique signatures from the earliest epochs in the evolution of the Universe, inaccessible to standard astrophysical observations. Direct measurements of the amplitude of this background are therefore of fundamental importance for understanding the evolution of the Universe when it was younger than one minute. Here we report limits on the amplitude of the stochastic gravitational-wave background using the data from a two-year science run of the Laser Interferometer Gravitational-wave Observatory (LIGO). Our result constrains the energy density of the stochastic gravitational-wave background normalized by the critical energy density of the Universe, in the frequency band around 100 Hz, to be <6.9 x 10(-6) at 95% confidence. The data rule out models of early Universe evolution with relatively large equation-of-state parameter, as well as cosmic (super)string models with relatively small string tension that are favoured in some string theory models. This search for the stochastic background improves on the indirect limits from Big Bang nucleosynthesis and cosmic microwave background at 100 Hz.
RESUMO
In-vacuum Faraday isolators (FIs) are used in gravitational wave interferometers to prevent the disturbance caused by light reflected back to the input port from the interferometer itself. The efficiency of the optical isolation is becoming more critical with the increase of laser input power. An in-vacuum FI, used in a gravitational wave experiment (Virgo), has a 20 mm clear aperture and is illuminated by an almost 20 W incoming beam, having a diameter of about 5 mm. When going in vacuum at 10(-6) mbar, a degradation of the isolation exceeding 10 dB was observed. A remotely controlled system using a motorized lambda=2 waveplate inserted between the first polarizer and the Faraday rotator has proven its capability to restore the optical isolation to a value close to the one set up in air.
RESUMO
We describe a model evaluating changes in the optical isolation of a Faraday isolator when passing from air to vacuum in terms of different thermal effects in the crystal. The changes are particularly significant in the crystal thermal lensing (refraction index and thermal expansion) and in its Verdet constant and can be ascribed to the less efficient convection cooling of the magneto-optic crystal of the Faraday isolator. An isolation decrease by a factor of 10 is experimentally observed in a Faraday isolator that is used in a gravitational wave experiment (Virgo) with a 10 W input laser when going from air to vacuum. A finite element model simulation reproduces with a great accuracy the experimental data measured on Virgo and on a test bench. A first set of measurements of the thermal lensing has been used to characterize the losses of the crystal, which depend on the sample. The isolation factor measured on Virgo confirms the simulation model and the absorption losses of 0.0016 +/- 0.0002/cm for the TGG magneto-optic crystal used in the Faraday isolator.
RESUMO
The Virgo interferometer, aimed at detecting gravitational waves, is now in a commissioning phase. Measurements of its optical properties are needed for the understanding of the instrument. We present the techniques developed for the measurement of the optical parameters of Virgo. These parameters are compared with the Virgo specifications.