Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Phys Chem Chem Phys ; 22(12): 6653-6659, 2020 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-32159169

RESUMO

Sodium-ion batteries are considered one of the most promising alternatives to lithium-ion batteries owing to the low cost and wide abundance of sodium. Phosphate compounds are promising materials for sodium-ion batteries because of their high structural stability, energy densities and capacities. Vanadium phosphates have shown high energy densities, but their sodium-ion diffusion and cation doping properties are not fully rationalized. In this work, we combine density functional theory calculations and molecular dynamics simulations to study the electronic structure, ion diffusion and cation doping properties of the Na4VO(PO4)2 compound. The calculated Na-ion activation energy of this compound is 0.49 eV, which is typical for Na-based cathode materials, and the simulations predict a Na-ion diffusion coefficient of 5.1 × 10-11 cm2 s-1. The cell voltage trends show a voltage of 3.3 V vs. Na/Na+. Partial substitution of vanadium atoms by other metals (Al3+, Co2+, Fe3+, Mn4+, Ni2+ or Ti4+) increases the cell voltage up to 1.1 V vs. Na/Na+. These new insights will help us to understand the ion transport and electrochemical behaviour of potential phosphate cathode materials for sodium-ion batteries.

2.
Phys Chem Chem Phys ; 22(12): 6763-6771, 2020 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-32168369

RESUMO

Understanding the surface reactivity of the commercial cathode material LiMn2O4 towards the electrolyte is important to improve the cycling performance of secondary lithium-ion batteries and to prevent manganese dissolution. In this work, we have employed spin-polarized density functional theory calculations with on-site Coulomb interactions and long-range dispersion corrections [DFT+U-D3-(BJ)] to investigate the adsorption of the electrolyte component ethylene carbonate (EC) onto the (001), (011) and (111) surfaces of the fully lithiated and partially delithiated Li1-xMn2O4 spinel (0.000 < x < 0.375). The surface interactions were investigated by evaluating the adsorption energies of the EC molecule and the surface free energies. Furthermore, we analyzed the impact of EC adsorption on the Wulff crystal morphologies, the molecular vibrational frequencies and the adsorbate/surface charge transfers. The adsorption energies indicate that the EC molecule strongly adsorbs on the (111) facet, which is attributed to a bidentate binding configuration. We found that EC adsorption enhances the stability of the (111) facet, as shown by the Wulff crystal morphologies. Although a negligible charge transfer was calculated between the spinel surfaces and the EC molecule, a large charge rearrangement takes place within the surfactant upon adsorption. The wavenumbers of the C[double bond, length as m-dash]O stretching mode for the interacting EC molecule are red-shifted with respect to the isolated adsorbate, suggesting that this bond becomes weaker. The surface free energies show that both the fully lithiated and partially delithiated forms of the LiMn2O4 surfaces are stabilized by the EC molecule.

3.
Inorg Chem ; 55(23): 12329-12347, 2016 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-27934444

RESUMO

Eight new members of a family of mixed-metal (Mo,W) polyoxometalates (POMs) with amino acid ligands have been synthesized and investigated in the solid state and solution using multiple physical techniques. While the peripheral POM structural framework is conserved, the different analogues vary in nuclearity of the central metal-oxo core, overall redox state, metal composition, and identity of the zwitterionic α-amino acid ligands. Structural investigations reveal site-selective substitution of Mo for W, with a strong preference for Mo to occupy the central metal-oxo core. This core structural unit is a closed tetrametallic loop in the blue reduced species and an open trimetallic loop in the colorless oxidized analogues. Density functional theory calculations suggest the core as the favored site of reduction and reveal that the corresponding molecular orbital is much lower in energy for a tetra- versus trimetallic core. The reduced species are diamagnetic, each with a pair of strongly antiferromagnetically coupled MoV centers in the tetrametallic core, while in the oxidized complexes all Mo is hexavalent. Solution small-angle X-ray scattering and circular dichroism (CD) studies indicate that the hybrid POM is stable in aqueous solution on a time scale of days within defined concentration and pH ranges, with the stability enhanced by the presence of excess amino acid. The CD experiments also reveal that the amino acid ligands readily exchange with other α-amino acids, and it is possible to isolate the products of amino acid exchange, confirming retention of the POM framework. Cyclic voltammograms of the reduced species exhibit an irreversible oxidation process at relatively low potential, but an equivalent reductive process is not evident for the oxidized analogues. Despite their overall structural similarity, the oxidized and 2e-reduced hybrid POMs are not interconvertible because of the respective open- versus closed-loop arrangement in the central metal-oxo cores.

4.
Chemistry ; 20(43): 14102-11, 2014 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-25204640

RESUMO

The first members of a promising new family of hybrid amino acid-polyoxometalates have emerged from a search for modular functional molecules. Incorporation of glycine (Gly) or norleucine (Nle) ligands into an yttrium-tungstoarsenate structural backbone, followed by crystallization with p-methylbenzylammonium (p-MeBzNH3(+)) cations, affords (p-MeBzNH3)6K2(GlyH)[As(III)4(Y(III)W(VI)3)W(VI)44Y(III)4O159(Gly)8(H2O)14]⋅47 H2O (1) and enantiomorphs (p-MeBzNH3)15(NleH)3[As(III)4(Mo(V)2Mo(VI)2)W(VI)44Y(III)4O160(Nle)9(H2O)11][As(III)4(Mo(VI)2W(VI)2)W(VI)44Y(III)4O160(Nle)9(H2O)11] (generically designated 2: L-Nle, 2 a; D-Nle, 2 b). An intensive structural, spectroscopic, electrochemical, magnetochemical and theoretical investigation has allowed the elucidation of site-selective metal substitution and photoreduction of the tetranuclear core of the hybrid polyanions. In the solid state, markedly different crystal packing is evident for the compounds, which indicates the role of noncovalent interactions involving the amino acid ligands. In solution, mass spectrometric and small-angle X-ray scattering studies confirm maintenance of the structure of the polyanions of 2, while circular dichroism demonstrates that the chirality is also maintained. The combination of all of these features in a single modular family emphasizes the potential of such hybrid polyoxometalates to provide nanoscale molecular materials with tunable properties.

5.
Inorg Chem ; 53(12): 5941-9, 2014 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-24892769

RESUMO

Polyoxometalates (POMs) are inorganic entities featuring extensive and sometimes unusual redox properties. In this work, several experimental techniques as well as density functional theory (DFT) calculations have been applied to identify and assess the relevance of factors influencing the redox potentials of POMs. First, the position of the Mo substituent atom in the Wells-Dawson structure, α1- or α2-P2W17Mo, determines the potential of the first 1e(-) reduction wave. For P2W(18-x)Mox systems containing more than one Mo atom, reduction takes place at successively more positive potentials. We attribute this fact to the higher electron delocalization when some Mo oxidizing atoms are connected. After having analyzed the experimental and theoretical data for the monosubstituted α1- and α2-P2W17Mo anions, some relevant facts arise that may help to rationalize the redox behavior of POMs in general. Three aspects concern the stability of systems: (i) the favorable electron delocalization, (ii) the unfavorable e(-)-e(-) electrostatic repulsion, and (iii) the favorable electron pairing. They explain trends such as the second reduction wave occurring at more positive potentials in α1- than in α2-P2W17Mo, and also the third electron reduction taking place at a less negative potential in the case of α2, reversing the observed behavior for the first and the second waves. In P2W17V derivatives, the nature of the first "d" electron is more localized because of the stronger oxidant character of V(V). Thus, the reduction potentials as well as the computed reduction energies (REs) for the second reduction of either isomer are closer to each other than in Mo-substituted POMs. This may be explained by the lack of electron delocalization in monoreduced P2W17V(IV) systems.

6.
Inorg Chem ; 51(11): 6129-38, 2012 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-22582705

RESUMO

The unusual redox behavior displayed by the two isomers of the Wells-Dawson phosphotungstate anion [Fe(H(2)O)P(2)W(17)O(61)](7-) is presented. The electrochemical measurements have been performed in aqueous media at different pH values from 0.5 up to 8.0. The cyclic voltammetry has also been carried out in organic media to get additional experimental data to establish the effect of the protonation on the redox properties of both isomers. At high pH values (pH ≥ 6) or in an organic medium, the reduction of the Fe center is easier in the case of the alpha-1 isomer, whereas for the alpha-2 isomer such reduction takes place at more negative potentials, as expected. In contrast, at lower pH values (pH ≤ 5), an inversion of this trend is observed, and the reduction of the Fe center becomes easier for the alpha-2 isomer compared to the alpha-1. We were able to highlight the influence of the pH and the pK(a) of the electrolyte on POM-based redox potentials given the pK(a) of the latter. A complementary theoretical study has also been performed to explain the experimental data obtained. In this sense, the results obtained from the DFT study are in good agreement with the experimental data mentioned above and have provided additional information for the electrochemical behavior of both isomers according to their different molecular orbital energies. We have also shown the influence of protonation state of the iron derivative on the relative reduction potentials of both isomers.

7.
Inorg Chem ; 51(16): 9017-28, 2012 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-22839965

RESUMO

The radioactive element technetium-99 ((99)Tc, half-life = 2.1 × 10(5) years, ß(-) of 253 keV), is a major byproduct of (235)U fission in the nuclear fuel cycle. (99)Tc is also found in radioactive waste tanks and in the environment at National Lab sites and fuel reprocessing centers. Separation and storage of the long-lived (99)Tc in an appropriate and stable waste-form is an important issue that needs to be addressed. Considering metal oxide solid-state materials as potential storage matrixes for Tc, we are examining the redox speciation of Tc on the molecular level using polyoxometalates (POMs) as models. In this study we investigate the electrochemistry of Tc complexes of the monovacant Wells-Dawson isomers, α(1)-P(2)W(17)O(61)(10-) (α1) and α(2)-P(2)W(17)O(61)(10-) (α2) to identify features of metal oxide materials that can stabilize the immobile Tc(IV) oxidation state accessed from the synthesized Tc(V)O species and to interrogate other possible oxidation states available to Tc within these materials. The experimental results are consistent with density functional theory (DFT) calculations. Electrochemistry of K(7-n)H(n)[Tc(V)O(α(1)-P(2)W(17)O(61))] (Tc(V)O-α1), K(7-n)H(n)[Tc(V)O(α(2)-P(2)W(17)O(61))] (Tc(V)O-α2) and their rhenium analogues as a function of pH show that the Tc-containing derivatives are always more readily reduced than their Re analogues. Both Tc and Re are reduced more readily in the lacunary α1 site as compared to the α2 site. The DFT calculations elucidate that the highest oxidation state attainable for Re is VII while, under the same electrochemistry conditions, the highest oxidation state for Tc is VI. The M(V)→ M(IV) reduction processes for Tc(V)O-α1 are not pH dependent or only slightly pH dependent suggesting that protonation does not accompany reduction of this species unlike the M(V)O-α2 (M = (99)Tc, Re) and Re(V)O-α1 where M(V/IV) reduction process must occur hand in hand with protonation of the terminal M═O to make the π*(M═O) orbitals accessible to the addition of electrons. This result is consistent with previous extended X-ray absorption fine structure (EXAFS) and X-ray absorption near edge structure (XANES) data that reveal that the Tc(V) is "pulled" into the -α1 framework and that may facilitate the reduction of Tc(V)O-α1 and stabilize lower Tc oxidation states. This study highlights the inequivalency of the two sites, and their impact on the chemical properties of the Tc substituted in these positions.


Assuntos
Quelantes/química , Elétrons , Óxidos/química , Rênio/química , Tecnécio/química , Compostos de Tungstênio/química , Eletroquímica , Concentração de Íons de Hidrogênio , Modelos Moleculares , Estrutura Molecular , Oxirredução , Teoria Quântica , Resíduos Radioativos , Termodinâmica
8.
Chemistry ; 17(50): 14129-38, 2011 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-22076707

RESUMO

The [ε-PMo(V)(8)Mo(VI)(4)O(36)(OH)(4){Ln(III)(H(2)O)}(4)](5+) (Ln=La, Ce, Nd, Sm) polyoxocations, called εLn(4), have been synthesized at room temperature as chloride salts soluble in water, MeOH, EtOH, and DMF. Rare-earth metals can be exchanged, and (31)P NMR spectroscopic studies have allowed a comparison of the affinity of the reduced {ε-PMo(12)} core, thus showing that the La(III) ions have the highest affinity and that rare earths heavier than Eu(III) do not react with the ε-Keggin polyoxometalate. DFT calculations provide a deeper insight into the geometries of the systems studied, thereby giving more accurate information on those compounds that suffer from disorder in crystalline form. It has also been confirmed by the hypothetical La→Gd substitution reaction energy that Ln ions beyond Eu cannot compete with La in coordinating the surface of the ε-Keggin molybdate. Two of these clusters (Ln=La, Ce) have been tested to evidence that such systems are representative of a new efficient Lewis acid catalyst family. This is the first time that the catalytic activity of polyoxocations has been evaluated.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA