Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Cell Mol Immunol ; 21(7): 770-786, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38839914

RESUMO

The hallmarks of spondyloarthritis (SpA) are type 3 immunity-driven inflammation and new bone formation (NBF). Macrophage migration inhibitory factor (MIF) was found to be a key driver of the pathogenesis of SpA by amplifying type 3 immunity, yet MIF-interacting molecules and networks remain elusive. Herein, we identified hypoxia-inducible factor-1 alpha (HIF1A) as an interacting partner molecule of MIF that drives SpA pathologies, including inflammation and NBF. HIF1A expression was increased in the joint tissues and synovial fluid of SpA patients and curdlan-injected SKG (curdlan-SKG) mice compared to the respective controls. Under hypoxic conditions in which HIF1A was stabilized, human and mouse neutrophils exhibited substantially increased expression of MIF and IL-23, an upstream type 3 immunity-related cytokine. Similar to MIF, systemic overexpression of IL-23 induced SpA pathology in SKG mice, while the injection of a HIF1A-selective inhibitor (PX-478) into curdlan-SKG mice prevented or attenuated SpA pathology, as indicated by a marked reduction in the expression of MIF and IL-23. Furthermore, genetic deletion of MIF or HIF1A inhibition with PX-478 in IL-23-overexpressing SKG mice did not induce evident arthritis or NBF, despite the presence of psoriasis-like dermatitis and blepharitis. We also found that MIF- and IL-23-expressing neutrophils infiltrated areas of the NBF in curdlan-SKG mice. These neutrophils potentially increased chondrogenesis and cell proliferation via the upregulation of STAT3 in periosteal cells and ligamental cells during endochondral ossification. Together, these results provide supporting evidence for an MIF/HIF1A regulatory network, and inhibition of HIF1A may be a novel therapeutic approach for SpA by suppressing type 3 immunity-mediated inflammation and NBF.


Assuntos
Condrogênese , Modelos Animais de Doenças , Subunidade alfa do Fator 1 Induzível por Hipóxia , Fatores Inibidores da Migração de Macrófagos , Neutrófilos , Animais , Fatores Inibidores da Migração de Macrófagos/metabolismo , Fatores Inibidores da Migração de Macrófagos/genética , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Neutrófilos/imunologia , Neutrófilos/metabolismo , Humanos , Camundongos , Espondilartrite/imunologia , Espondilartrite/patologia , Oxirredutases Intramoleculares/metabolismo , Oxirredutases Intramoleculares/genética , Interleucina-23/metabolismo , beta-Glucanas/farmacologia , Camundongos Endogâmicos C57BL , Masculino , Feminino , Imunidade
2.
iScience ; 25(12): 105487, 2022 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-36425756

RESUMO

Small-cell lung cancer (SCLC) methylome is understudied. Here, we comprehensively profile SCLC using cell-free methylated DNA immunoprecipitation followed by sequencing (cfMeDIP-seq). Cell-free DNA (cfDNA) from plasma of 74 patients with SCLC pre-treatment and from 20 non-cancer participants, genomic DNA (gDNA) from peripheral blood leukocytes from the same 74 patients, and 7 accompanying circulating tumor cell-derived xenografts (CDXs) underwent cfMeDIP-seq. Peripheral blood leukocyte methylation (PRIME) subtraction to improve tumor specificity. SCLC cfDNA methylation is distinct from non-cancer but correlates with CDX tumor methylation. PRIME and k-means consensus identified two methylome clusters with prognostic associations that related to axon guidance, neuroactive ligand-receptor interaction, pluripotency of stem cells, and differentially methylated at long noncoding RNA and other repeats features. We comprehensively profiled the SCLC methylome in a large patient cohort and identified methylome clusters with prognostic associations. Our work demonstrates the potential of liquid biopsies in examining SCLC biology encoded in the methylome.

3.
Clin Cancer Res ; 28(9): 1966-1978, 2022 05 02.
Artigo em Inglês | MEDLINE | ID: mdl-35165102

RESUMO

PURPOSE: Small cell lung cancer (SCLC) is an aggressive disease with an overall 5-year survival rate of less than 10%. Treatment for SCLC with cisplatin/etoposide chemotherapy (C/E) ± radiotherapy has changed modestly over several decades. The ubiquitin-proteasome system is an underexplored therapeutic target for SCLC. We preclinically evaluated TAK-243, a first-in-class small molecule E1 inhibitor against UBA1. EXPERIMENTAL DESIGN: We assessed TAK-243 in 26 SCLC cell-lines as monotherapy and combined with C/E, the PARP-inhibitor, olaparib, and with radiation using cell viability assays. We interrogated TAK-243 response with gene expression to identify candidate biomarkers. We evaluated TAK-243 alone and in combination with olaparib or radiotherapy with SCLC patient-derived xenografts (PDX). RESULTS: Most SCLC cell lines were sensitive to TAK-243 monotherapy (EC50 median 15.8 nmol/L; range 10.2 nmol/L-367.3 nmol/L). TAK-243 sensitivity was associated with gene-sets involving the cell cycle, DNA and chromatin organization, and DNA damage repair, while resistance associated with cellular respiration, translation, and neurodevelopment. These associations were also observed in SCLC PDXs. TAK-243 synergized with C/E and olaparib in vitro across sensitive and resistant SCLC cell lines. Considerable TAK-243-olaparib synergy was observed in an SCLC PDX resistant to both drugs individually. TAK-243 radiosensitization was also observed in an SCLC PDX. CONCLUSIONS: TAK-243 displays efficacy in SCLC preclinical models. Enrichment of gene sets is associated with TAK-243 sensitivity and resistance. TAK-243 exhibits synergy when combined with genotoxic therapies in cell lines and PDXs. TAK-243 is a potential therapeutic strategy to improve SCLC patient outcomes, both as a single agent and in combination with existing therapies.


Assuntos
Neoplasias Pulmonares , Carcinoma de Pequenas Células do Pulmão , Linhagem Celular Tumoral , Humanos , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Complexo de Endopeptidases do Proteassoma , Pirazóis , Pirimidinas , Carcinoma de Pequenas Células do Pulmão/tratamento farmacológico , Carcinoma de Pequenas Células do Pulmão/genética , Carcinoma de Pequenas Células do Pulmão/metabolismo , Sulfetos , Sulfonamidas , Ubiquitina , Ensaios Antitumorais Modelo de Xenoenxerto
4.
J Stem Cells ; 11(3): 111-119, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-28296875

RESUMO

Therapeutic potential of adipose derived stem cells (ADSCs) has widely been explored for treatment of orthopedic ailments. Transplantation of cells encapsulated in a scaffold facilitates 3 dimensional modelling of the tissue for the cases where well-defined spatial distribution of cells is desired for implantation. Present study aims to encapsulate canine ADSCs (cADSCs) in biodegradable methacrylated gelatin gel (GelMA) scaffold followed by their osteogenic differentiation for fabrication of a three dimensional bone tissue construct. Different percentages (5, 10 and 20%) and different methacrylation levels of gel (GelMAhigh and GelMAlow) were tested for degradation. Porosity of 10% GelMA was compared by SEM imaging. Gels with the fastest degradation rate (5% GelMAhigh and GelMAlow) were chosen for cell encapsulation since degradation of scaffold is of prime importance when the gel is intended to be used for implantation. Finally, cADSCs encapsulated in 5% GelMAlow demonstrated best morphology and were differentiated osteogenically. We developed a modified protocol for isolation of RNA from cells encapsulated in GelMA. Osteogenic differentiation was affirmed by the presence of osteo-specific gene expression by reverse transcriptase PCR in addition to von Kossa staining of the construct. GelMA is an excellent biodegradable scaffold for encapsulation of cADSCs without altering their osteogenic potential. This osteo-induced cellular scaffold implant opens a new therapeutic horizon in the area of tissue engineering in orthopedics.


Assuntos
Tecido Adiposo/citologia , Materiais Biocompatíveis/farmacologia , Gelatina/farmacologia , Géis/farmacologia , Metacrilatos/farmacologia , Células-Tronco/citologia , Engenharia Tecidual/métodos , Alicerces Teciduais/química , Animais , Diferenciação Celular/efeitos dos fármacos , Células Cultivadas , Cães , Feminino , Osteogênese/efeitos dos fármacos , Coloração e Rotulagem , Sus scrofa
5.
Biotechnol Prog ; 29(2): 425-31, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23292805

RESUMO

RNA interference represents one of the potential mechanisms of regulation of gene expression. Selective downregulation of myostatin (MSTN), a member of transforming growth factor-ß (TGF-ß) superfamily and a negative regulator of myogenesis, has been demonstrated to enhance skeletal muscle growth. In this study, we studied short hairpin RNA (shRNA)-induced myostatin gene silencing in chicken embryonic myoblast cells using seven different shRNA-expressing constructs by reverse transcription-quantitative real time PCR (RT-qPCR). Myostatin-silencing efficiency of all shRNA constructs were first evaluated in human embryonic kidney cell line 293T (HEK293T) cells, where we observed 30-75.6% reduction in myostatin expression, followed by chicken embryo myoblast cells that revealed up to 55% reduction in myostatin expression along with upregulation of MyoD by 4.65-folds. Consistent with the earlier observations, the transfection of cells with plasmids led to significant increase in interferon responsive genes OAS1 and IFN ß (2-112-folds), independent of myostatin silencing in both HEK293T and chicken embryonic myoblast cells. Our study suggests that apart from shRNA sequences, cell type-specific factors may play a significant role in determining the knockdown efficiency of shRNAs.


Assuntos
Galinhas/genética , Mioblastos/metabolismo , Miostatina/genética , Interferência de RNA , RNA Interferente Pequeno/genética , Animais , Embrião de Galinha/metabolismo , Galinhas/metabolismo , Células HEK293 , Humanos , Proteína MyoD/genética , Proteína MyoD/metabolismo , Miostatina/metabolismo , RNA Interferente Pequeno/metabolismo , Transfecção
6.
J Stem Cells ; 7(4): 201-9, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-24196796

RESUMO

Stem cells based tissue engineering is a promising approach for the regenerative treatment of various tissue disorders. Adipose tissue is an abundant source of cells which are competent of multipotential differentiation, called adipose-derived stem cells (ADSCs). The present study was contemplated with the objective of assessing the osteogenic differentiation potential of the canine ADSCs in vitro. The canine ADSCs were isolated from adipose tissue around falciform ligament and abdominal subcutaneous fat. Yield of viable ADSCs from both the tissue sources was found to be nearly equivalent. Tissue subjected to trypsinization yielded more viable, but lesser number of cells as compared to collagenase treatment. The stemness of ADSCs was affirmed by reverse transcriptase PCR which exhibited the expression of stem cell specific genes, OCT4 and NANOG.The monolayer of ADSCs was subjected to differentiation into adipogenic and osteogenic lineages. Assessment of the osteogenic potential of ADSCs in vitro opens a new therapeutic horizon for development of in vivo strategies employing autologous stem cell based tissue regeneration in orthopedics.


Assuntos
Diferenciação Celular , Osteoblastos/metabolismo , Osteogênese , Células-Tronco/metabolismo , Gordura Subcutânea Abdominal/metabolismo , Adipócitos/metabolismo , Adipogenia , Animais , Linhagem da Célula , Separação Celular/métodos , Sobrevivência Celular , Células Cultivadas , Cães , Feminino , Regulação da Expressão Gênica no Desenvolvimento , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Fator 3 de Transcrição de Octâmero/genética , Fator 3 de Transcrição de Octâmero/metabolismo , Gordura Subcutânea Abdominal/citologia
7.
J Biotechnol ; 160(3-4): 140-5, 2012 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-22445467

RESUMO

Myostatin (MSTN), a member of transforming growth factor-ß (TGF-ß) superfamily, is a negative regulator of the skeletal muscle growth, and suppresses the proliferation and differentiation of myoblast cells. Dysfunction of MSTN gene either by natural mutation or genetic manipulation (knockout or knockdown) has been reported to interrupt its proper function and to increase the muscle mass in many mammalian species. RNA interference (RNAi) mediated by small interfering RNAs (siRNAs) or short hairpin RNAs (shRNAs) has become a powerful tool for gene knockdown studies. In the present study transient silencing of MSTN gene in chicken embryo fibroblast cells was evaluated using five different shRNA expression constructs. We report here up to 68% silencing of myostatin mRNA using these shRNA constructs in transiently transfected fibroblasts (p<0.05). This was, however, associated with induction of interferon responsive genes (OAS1, IFN-ß) (3.7-64 folds; p<0.05). Further work on stable expression of antimyostatin shRNA with minimum interferon induction will be of immense value to increase the muscle mass in the transgenic animals.


Assuntos
Fibroblastos/fisiologia , Inativação Gênica/fisiologia , Miostatina/genética , Interferência de RNA/fisiologia , Transfecção/métodos , Animais , Embrião de Galinha
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA