Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nat Immunol ; 20(10): 1348-1359, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31406382

RESUMO

Helper T cells actively communicate with adjacent cells by secreting soluble mediators, yet crosstalk between helper T cells and endothelial cells remains poorly understood. Here we found that placental growth factor (PlGF), a homolog of the vascular endothelial growth factor that enhances an angiogenic switch in disease, was selectively secreted by the TH17 subset of helper T cells and promoted angiogenesis. Interestingly, the 'angio-lymphokine' PlGF, in turn, specifically induced the differentiation of pathogenic TH17 cells by activating the transcription factor STAT3 via binding to its receptors and replaced the activity of interleukin-6 in the production of interleukin-17, whereas it suppressed the generation of regulatory T cells. Moreover, T cell-derived PlGF was required for the progression of autoimmune diseases associated with TH17 differentiation, including experimental autoimmune encephalomyelitis and collagen-induced arthritis, in mice. Collectively, our findings provide insights into the PlGF-dictated links among angiogenesis, TH17 cell development and autoimmunity.


Assuntos
Artrite Experimental/imunologia , Encefalomielite Autoimune Experimental/imunologia , Fator de Crescimento Placentário/metabolismo , Linfócitos T Reguladores/imunologia , Células Th17/imunologia , Animais , Autoimunidade , Diferenciação Celular , Células Cultivadas , Interleucina-17/metabolismo , Interleucina-6/metabolismo , Ativação Linfocitária , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos DBA , Camundongos Knockout , Neovascularização Patológica , Fator de Crescimento Placentário/genética , Fator de Transcrição STAT3/genética , Fator de Transcrição STAT3/metabolismo
2.
Angiogenesis ; 2024 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-39316206

RESUMO

Inflammasome activation is implicated in diseases of aberrant angiogenesis such as age-related macular degeneration (AMD), though its precise role in choroidal neovascularization (CNV), a characteristic pathology of advanced AMD, is ill-defined. Reports on inhibition of inflammasome constituents on CNV are variable and the precise role of inflammasome in mediating pathological angiogenesis is unclear. Historically, subretinal injection of inflammasome agonists alone has been used to investigate retinal pigmented epithelium (RPE) degeneration, while the laser photocoagulation model has been used to study pathological angiogenesis in a model of CNV. Here, we report that the simultaneous introduction of any of several disease-relevant inflammasome agonists (Alu or B2 RNA, Alu cDNA, or oligomerized amyloid ß (1-40)) exacerbates laser-induced CNV. These activities were diminished or abrogated by genetic or pharmacological targeting of inflammasome signaling constituents including P2rx7, Nlrp3, caspase-1, caspase-11, and Myd88, as well as in myeloid-specific caspase-1 knockout mice. Alu RNA treatment induced inflammasome activation in macrophages within the CNV lesion, and increased accumulation of macrophages in an inflammasome-dependent manner. Finally, IL-1ß neutralization prevented inflammasome agonist-induced chemotaxis, macrophage trafficking, and angiogenesis. Collectively, these observations support a model wherein inflammasome stimulation promotes and exacerbates CNV and may be a therapeutic target for diseases of angiogenesis such as neovascular AMD.

3.
Proc Natl Acad Sci U S A ; 118(41)2021 10 12.
Artigo em Inglês | MEDLINE | ID: mdl-34620711

RESUMO

The atrophic form of age-related macular degeneration (dry AMD) affects nearly 200 million people worldwide. There is no Food and Drug Administration (FDA)-approved therapy for this disease, which is the leading cause of irreversible blindness among people over 50 y of age. Vision loss in dry AMD results from degeneration of the retinal pigmented epithelium (RPE). RPE cell death is driven in part by accumulation of Alu RNAs, which are noncoding transcripts of a human retrotransposon. Alu RNA induces RPE degeneration by activating the NLRP3-ASC inflammasome. We report that fluoxetine, an FDA-approved drug for treating clinical depression, binds NLRP3 in silico, in vitro, and in vivo and inhibits activation of the NLRP3-ASC inflammasome and inflammatory cytokine release in RPE cells and macrophages, two critical cell types in dry AMD. We also demonstrate that fluoxetine, unlike several other antidepressant drugs, reduces Alu RNA-induced RPE degeneration in mice. Finally, by analyzing two health insurance databases comprising more than 100 million Americans, we report a reduced hazard of developing dry AMD among patients with depression who were treated with fluoxetine. Collectively, these studies identify fluoxetine as a potential drug-repurposing candidate for dry AMD.


Assuntos
Antidepressivos de Segunda Geração/farmacologia , Reposicionamento de Medicamentos/métodos , Fluoxetina/farmacologia , Degeneração Macular/tratamento farmacológico , Proteína 3 que Contém Domínio de Pirina da Família NLR/antagonistas & inibidores , Epitélio Pigmentado da Retina/efeitos dos fármacos , Elementos Alu/genética , Animais , Cegueira/patologia , Cegueira/prevenção & controle , Linhagem Celular , Citocinas/metabolismo , Depressão/tratamento farmacológico , Modelos Animais de Doenças , Inflamassomos/metabolismo , Macrófagos/imunologia , Camundongos , Camundongos Endogâmicos C57BL , RNA/genética , Retina/patologia , Epitélio Pigmentado da Retina/citologia , Epitélio Pigmentado da Retina/patologia
4.
Proc Natl Acad Sci U S A ; 118(6)2021 02 09.
Artigo em Inglês | MEDLINE | ID: mdl-33526699

RESUMO

Alu retroelements propagate via retrotransposition by hijacking long interspersed nuclear element-1 (L1) reverse transcriptase (RT) and endonuclease activities. Reverse transcription of Alu RNA into complementary DNA (cDNA) is presumed to occur exclusively in the nucleus at the genomic integration site. Whether Alu cDNA is synthesized independently of genomic integration is unknown. Alu RNA promotes retinal pigmented epithelium (RPE) death in geographic atrophy, an untreatable type of age-related macular degeneration. We report that Alu RNA-induced RPE degeneration is mediated via cytoplasmic L1-reverse-transcribed Alu cDNA independently of retrotransposition. Alu RNA did not induce cDNA production or RPE degeneration in L1-inhibited animals or human cells. Alu reverse transcription can be initiated in the cytoplasm via self-priming of Alu RNA. In four health insurance databases, use of nucleoside RT inhibitors was associated with reduced risk of developing atrophic macular degeneration (pooled adjusted hazard ratio, 0.616; 95% confidence interval, 0.493-0.770), thus identifying inhibitors of this Alu replication cycle shunt as potential therapies for a major cause of blindness.


Assuntos
Elementos Alu/genética , Elementos Nucleotídeos Longos e Dispersos/genética , Degeneração Macular/genética , Pigmentos da Retina/metabolismo , Animais , Citoplasma/genética , DNA Complementar/genética , Epitélio/metabolismo , Epitélio/patologia , Humanos , Degeneração Macular/patologia , Pigmentos da Retina/biossíntese , Retroelementos/genética , Transcrição Reversa/genética
5.
Proc Natl Acad Sci U S A ; 117(5): 2579-2587, 2020 02 04.
Artigo em Inglês | MEDLINE | ID: mdl-31964819

RESUMO

Degeneration of the retinal pigmented epithelium (RPE) and aberrant blood vessel growth in the eye are advanced-stage processes in blinding diseases such as age-related macular degeneration (AMD), which affect hundreds of millions of people worldwide. Loss of the RNase DICER1, an essential factor in micro-RNA biogenesis, is implicated in RPE atrophy. However, the functional implications of DICER1 loss in choroidal and retinal neovascularization are unknown. Here, we report that two independent hypomorphic mouse strains, as well as a separate model of postnatal RPE-specific DICER1 ablation, all presented with spontaneous RPE degeneration and choroidal and retinal neovascularization. DICER1 hypomorphic mice lacking critical inflammasome components or the innate immune adaptor MyD88 developed less severe RPE atrophy and pathological neovascularization. DICER1 abundance was also reduced in retinas of the JR5558 mouse model of spontaneous choroidal neovascularization. Finally, adenoassociated vector-mediated gene delivery of a truncated DICER1 variant (OptiDicer) reduced spontaneous choroidal neovascularization in JR5558 mice. Collectively, these findings significantly expand the repertoire of DICER1 in preserving retinal homeostasis by preventing both RPE degeneration and pathological neovascularization.


Assuntos
RNA Helicases DEAD-box/metabolismo , Degeneração Macular/metabolismo , Epitélio Pigmentado da Retina/irrigação sanguínea , Ribonuclease III/metabolismo , Animais , Neovascularização de Coroide/genética , Neovascularização de Coroide/metabolismo , Neovascularização de Coroide/patologia , Neovascularização de Coroide/fisiopatologia , RNA Helicases DEAD-box/genética , Humanos , Degeneração Macular/genética , Degeneração Macular/patologia , Degeneração Macular/fisiopatologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Degeneração Retiniana/genética , Degeneração Retiniana/metabolismo , Degeneração Retiniana/patologia , Degeneração Retiniana/fisiopatologia , Neovascularização Retiniana/genética , Neovascularização Retiniana/metabolismo , Neovascularização Retiniana/parasitologia , Neovascularização Retiniana/fisiopatologia , Epitélio Pigmentado da Retina/metabolismo , Epitélio Pigmentado da Retina/patologia , Ribonuclease III/genética
6.
Int J Mol Sci ; 22(8)2021 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-33918807

RESUMO

Prolyl 3-hydroxylase 2 (P3H2) catalyzes the post-translational formation of 3-hydroxyproline on collagens, mainly on type IV. Its activity has never been directly associated to angiogenesis. Here, we identified P3H2 gene through a deep-sequencing transcriptome analysis of human umbilical vein endothelial cells (HUVECs) stimulated with vascular endothelial growth factor A (VEGF-A). Differently from many previous studies we carried out the stimulation not on starved HUVECs, but on cells grown to maintain the best condition for their in vitro survival and propagation. We showed that P3H2 is induced by VEGF-A in two primary human endothelial cell lines and that its transcription is modulated by VEGF-A/VEGF receptor 2 (VEGFR-2) signaling pathway through p38 mitogen-activated protein kinase (MAPK). Then, we demonstrated that P3H2, through its activity on type IV Collagen, is essential for angiogenesis properties of endothelial cells in vitro by performing experiments of gain- and loss-of-function. Immunofluorescence studies showed that the overexpression of P3H2 induced a more condensed status of Collagen IV, accompanied by an alignment of the cells along the Collagen IV bundles, so towards an evident pro-angiogenic status. Finally, we found that P3H2 knockdown prevents pathological angiogenesis in vivo, in the model of laser-induced choroid neovascularization. Together these findings reveal that P3H2 is a new molecular player involved in new vessels formation and could be considered as a potential target for anti-angiogenesis therapy.


Assuntos
Neovascularização Patológica/genética , Neovascularização Patológica/metabolismo , Neovascularização Fisiológica , Pró-Colágeno-Prolina Dioxigenase/genética , Pró-Colágeno-Prolina Dioxigenase/metabolismo , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/metabolismo , Animais , Neovascularização de Coroide/diagnóstico por imagem , Neovascularização de Coroide/etiologia , Neovascularização de Coroide/metabolismo , Neovascularização de Coroide/patologia , Colágeno Tipo IV/genética , Colágeno Tipo IV/metabolismo , Modelos Animais de Doenças , Imunofluorescência , Regulação da Expressão Gênica , Células Endoteliais da Veia Umbilical Humana/metabolismo , Humanos , Camundongos , Ligação Proteica , Transdução de Sinais , Fator A de Crescimento do Endotélio Vascular/genética , Fator A de Crescimento do Endotélio Vascular/metabolismo , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
7.
Int J Mol Sci ; 22(9)2021 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-33922399

RESUMO

Eye drop formulations allowing topical treatment of retinal pathologies have long been sought as alternatives to intravitreal administration. This study aimed to assess whether a novel nanostructured microemulsions system (NaMESys) could be usefully employed to deliver sorafenib to the retina following topical instillation. NaMESys carrying 0.3% sorafenib (NaMESys-SOR) proved to be cytocompatible in vitro on rabbit corneal cells, and well-tolerated following b.i.d. ocular administration to rabbits during a 3-month study. In rats subject to retinal ischemia-reperfusion, NaMESys-SOR significantly inhibited retinal expression of tumor necrosis factor-alpha (TNFα, 20.7%) and inducible nitric oxide synthase (iNos, 87.3%) mRNAs in comparison to controls. Similarly, in streptozotocin-induced diabetic rats, NaMESys-SOR inhibited retinal expression of nuclear factor kappa B (NFκB), TNFα, insulin like growth factor 1 (IGF1), IGF1 receptor (IGF1R), vascular endothelial growth factor receptor 1 (VEGFR1) and 2 (VEGFR2) mRNAs by three-fold on average compared to controls. Furthermore, a reduction in TNFα, VEGFR1 and VEGFR2 protein expression was observed by western blot. Moreover, in mice subject to laser-induced choroidal neovascularization, NaMESys-SOR significantly inhibited neovascular lesions by 54%. In conclusion, NaMESys-SOR was shown to be a well-tolerated ophthalmic formulation able to deliver effective amounts of sorafenib to the retina, reducing proinflammatory and pro-angiogenic mediators in reliable models of proliferative retinopathies. These findings warrant further investigations on the full therapeutic potential of NaMESys-SOR eye drops, aiming to address unmet needs in the pharmacotherapy of retinal neovascular diseases.


Assuntos
Neovascularização de Coroide/tratamento farmacológico , Diabetes Mellitus Experimental/complicações , Retinopatia Diabética/tratamento farmacológico , Nanoestruturas/administração & dosagem , Doenças Retinianas/tratamento farmacológico , Neovascularização Retiniana/tratamento farmacológico , Sorafenibe/farmacologia , Administração Oftálmica , Animais , Retinopatia Diabética/etiologia , Retinopatia Diabética/patologia , Modelos Animais de Doenças , Emulsões , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Nanoestruturas/química , Inibidores de Proteínas Quinases/administração & dosagem , Inibidores de Proteínas Quinases/farmacologia , Coelhos , Ratos , Ratos Sprague-Dawley , Doenças Retinianas/patologia , Sorafenibe/administração & dosagem
8.
Amino Acids ; 50(2): 321-329, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29198078

RESUMO

Pharmacological strategies aimed at preventing cancer growth are in most cases paralleled by diagnostic investigations for monitoring and prognosticating therapeutic efficacy. A relevant approach in cancer is the suppression of pathological angiogenesis, which is principally driven by vascular endothelial growth factor (VEGF) or closely related factors and by activation of specific receptors, prevailingly VEGFR1 and VEGFR2, set on the surface of endothelial cells. Monitoring the presence of these receptors in vivo is henceforth a way to predict therapy outcome. We have designed small peptides able to bind and possibly antagonize VEGF ligands by targeting VEGF receptors. Peptide systems have been designed to be small, cyclic and to host triplets of residues known to be essential for VEGF receptors recognition and we named them 'mini-factors'. They have been structurally characterized by CD, NMR and molecular dynamics (MD) simulations. Mini-factors do bind with different specificity and affinity VEGF receptors but none blocks receptor activity. Following derivatization with suitable tracers they have been employed as molecular probes for sensing receptors on cell surface without affecting their activity as is usually observed with other binders having neutralizing activity.


Assuntos
Oligopeptídeos/metabolismo , Receptores de Fatores de Crescimento do Endotélio Vascular/metabolismo , Receptor 1 de Fatores de Crescimento do Endotélio Vascular/metabolismo , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/metabolismo , Biotinilação , Dissulfetos/química , Relação Dose-Resposta a Droga , Ensaio de Imunoadsorção Enzimática , Citometria de Fluxo , Células HEK293 , Humanos , Imageamento por Ressonância Magnética , Modelos Moleculares , Oligopeptídeos/química , Biblioteca de Peptídeos , Ligação Proteica , Proteínas Recombinantes/metabolismo , Ressonância de Plasmônio de Superfície
9.
Biochim Biophys Acta ; 1840(3): 1135-44, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24321480

RESUMO

BACKGROUND: The semi-synthetic ent-kaurane 15-ketoatractyligenin methyl ester (SC2017) has been previously reported to possess high antiproliferative activity against several solid tumor-derived cell lines. Our study was aimed at investigating SC2017 tumor growth-inhibiting activity and the underlying mechanisms in Jurkat cells (T-cell leukemia) and xenograft tumor models. METHODS: Cell viability was evaluated by MTT assay. Cell cycle progression, reactive oxygen species (ROS) elevation and apoptotic hallmarks were monitored by flow cytometry. Inhibition of thioredoxin reductase (TrxR) by biochemical assays. Levels and/or activation status of signaling proteins were assessed by western blotting. Xenograft tumors were generated with HCT 116 colon carcinoma cells. RESULTS: SC2017 displayed cell growth-inhibiting activity against Jurkat cells (half maximal inhibitory concentration values (IC50)<2µM), but low cell-killing potential in human peripheral blood mononuclear cells (PBMC). The primary response of Jurkat cells to SC2017 was an arrest in G2 phase followed by caspase-dependent apoptosis. Inhibition of PI3K/Akt pathway and TrxR activity by SC2017 was demonstrated by biochemical and pharmacological approaches. At least, SC2017 was found to inhibit xenograft tumor growth. CONCLUSIONS: Our results demonstrate that SC2017 inhibits tumor cell growth in in vitro and in vivo models, but displays moderate toxicity against PBMC. We also demonstrate that SC2017 promotes caspase-dependent apoptosis in Jurkat cells by affecting Akt activation status and TrxR functionality. GENERAL SIGNIFICANCE: Our observations suggest the semi-synthetic ent-kaurane SC2017 as a promising chemotherapeutic compound. SC2017 has, indeed, shown to possess tumor growth inhibiting activity and be able to counteract PI3K/Akt and Trx system survival signaling.


Assuntos
Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Atractilosídeo/análogos & derivados , Proliferação de Células/efeitos dos fármacos , Diterpenos do Tipo Caurano/farmacologia , Fosfatidilinositol 3-Quinases/fisiologia , Proteínas Proto-Oncogênicas c-akt/fisiologia , Tiorredoxinas/fisiologia , Animais , Atractilosídeo/farmacologia , Caspases/fisiologia , Citocromos c/metabolismo , Humanos , Camundongos , Células Tumorais Cultivadas , Ensaios Antitumorais Modelo de Xenoenxerto
10.
Invest Ophthalmol Vis Sci ; 64(5): 3, 2023 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-37129905

RESUMO

Purpose: Rhegmatogenous retinal detachment (RRD) is a vision-threatening event that benefits from surgical intervention. While awaiting surgical reattachment, irreversible hypoxic and inflammatory damage to the retina often occurs. An interim therapy protecting photoreceptors could improve functional outcomes. We sought to determine whether Kamuvudine-9 (K-9), a derivative of nucleoside reverse transcriptase inhibitors (NRTIs) that inhibits inflammasome activation, and the NRTIs lamivudine (3TC) and azidothymidine (AZT) could protect the retina following RRD. Methods: RRD was induced in mice via subretinal injection (SRI) of 1% carboxymethylcellulose (CMC). To simulate outcomes following the clinical management of RRD, we determined the optimal conditions by which SRI of CMC induced spontaneous retinal reattachment (SRR) occurs over 10 days (RRD/SRR). K-9, 3TC, or AZT was administered via intraperitoneal injection. Inflammasome activation pathways were monitored by abundance of cleaved caspase-1, IL-18, and cleaved caspase-8, and photoreceptor death was assessed by TUNEL staining. Retinal function was assessed by full-field scotopic electroretinography. Results: RRD induced retinal inflammasome activation and photoreceptor death in mice. Systemic administration of K-9, 3TC, or AZT inhibited retinal inflammasome activation and photoreceptor death. In the RRD/SRR model, K-9 protected retinal electrical function during the time of RRD and induced an improvement following retinal reattachment. Conclusions: K-9 and NRTIs exhibit anti-inflammatory and neuroprotective activities in experimental RRD. Given its capacity to protect photoreceptor function during the period of RRD and enhance retinal function following reattachment, K-9 shows promise as a retinal neuroprotectant and warrants study in RRD. Further, this novel RRD/SRR model may facilitate experimental evaluation of functional outcomes relevant to RRD.


Assuntos
Descolamento Retiniano , Animais , Camundongos , Descolamento Retiniano/cirurgia , Inflamassomos , Acuidade Visual , Retina , Estudos Retrospectivos , Vitrectomia
11.
Nat Protoc ; 17(6): 1468-1485, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35418688

RESUMO

Subretinal injection (SRI) is a widely used technique in retinal research and can be used to deliver nucleic acids, small molecules, macromolecules, viruses, cells or biomaterials such as nanobeads. Here we describe how to undertake SRI of mice. This protocol was adapted from a technique initially described for larger animals. Although SRI is a common procedure in eye research laboratories, there is no published guidance on the best practices for determining what constitutes a 'successful' SRI. Optimal injections are required for reproducibility of the procedure and, when carried out suboptimally, can lead to erroneous conclusions. To address this issue, we propose a standardized protocol for SRI with 'procedure success' defined by follow-up examination of the retina and the retinal pigmented epithelium rather than solely via intraoperative endpoints. This protocol takes 7-14 d to complete, depending on the reagent delivered. We have found, by instituting a standardized training program, that trained ophthalmologists achieve reliable proficiency in this technique after ~350 practice injections. This technique can be used to gain insights into retinal physiology and disease pathogenesis and to test the efficacy of experimental compounds in the retina or retinal pigmented epithelium.


Assuntos
Retina , Epitélio Pigmentado da Retina , Animais , Injeções , Camundongos , Reprodutibilidade dos Testes , Retina/patologia
12.
Transl Vis Sci Technol ; 11(3): 13, 2022 03 02.
Artigo em Inglês | MEDLINE | ID: mdl-35275207

RESUMO

Purpose: Subretinal injection (SRI) in mice is widely used in retinal research, yet the learning curve (LC) of this surgically challenging technique is unknown. Methods: To evaluate the LC for SRI in a murine model, we analyzed training data from three clinically trained ophthalmic surgeons from 2018 to 2020. Successful SRI was defined as either the absence of retinal pigment epithelium (RPE) degeneration after phosphate buffered saline injection or the presence of RPE degeneration after Alu RNA injection. Multivariable survival-time regression models were used to evaluate the association between surgeon experience and success rate, with adjustment for injection agents, and to calculate an approximate case number to achieve a 95% success rate. Cumulative sum (CUSUM) analyses were performed and plotted individually to monitor each surgeon's simultaneous performance. Results: Despite prior microsurgery experience, the combined average success rate of the first 50 cases in mice was only 27%. The predicted SRI success rate did not reach a plateau above 95% until approximately 364 prior cases. Using the 364 training cases as a cutoff point, the predicted probability of success for cases 1 to 364 was 65.38%, and for cases 365 to 455 it was 99.32% (P < 0.0001). CUSUM analysis showed an initial upward slope and then remained within the decision intervals with an acceptable success rate set at 95% in the late stage. Conclusions: This study demonstrates the complexity and substantial LC for successful SRI in mice with high confidence. A systematic training system could improve the reliability and reproducibility of SRI-related experiments and improve the interpretation of experimental results using this technique. Translational Relevance: Our prediction model and monitor system allow objective quantification of technical proficiency in the field of subretinal drug delivery and gene therapy for the first time, to the best of our knowledge.


Assuntos
Oftalmologistas , Cirurgiões , Animais , Humanos , Curva de Aprendizado , Camundongos , Duração da Cirurgia , Reprodutibilidade dos Testes , Cirurgiões/educação
13.
Signal Transduct Target Ther ; 6(1): 149, 2021 04 14.
Artigo em Inglês | MEDLINE | ID: mdl-33850097

RESUMO

Nonfibrillar amyloid-ß oligomers (AßOs) are a major component of drusen, the sub-retinal pigmented epithelium (RPE) extracellular deposits characteristic of age-related macular degeneration (AMD), a common cause of global blindness. We report that AßOs induce RPE degeneration, a clinical hallmark of geographic atrophy (GA), a vision-threatening late stage of AMD that is currently untreatable. We demonstrate that AßOs induce activation of the NLRP3 inflammasome in the mouse RPE in vivo and that RPE expression of the purinergic ATP receptor P2RX7, an upstream mediator of NLRP3 inflammasome activation, is required for AßO-induced RPE degeneration. Two classes of small molecule inflammasome inhibitors-nucleoside reverse transcriptase inhibitors (NRTIs) and their antiretrovirally inert modified analog Kamuvudines-both inhibit AßOs-induced RPE degeneration. These findings crystallize the importance of P2RX7 and NLRP3 in a disease-relevant model of AMD and identify inflammasome inhibitors as potential treatments for GA.


Assuntos
Peptídeos beta-Amiloides/metabolismo , Degeneração Macular/tratamento farmacológico , Epitélio Pigmentado da Retina/metabolismo , Inibidores da Transcriptase Reversa/farmacologia , Peptídeos beta-Amiloides/genética , Animais , Modelos Animais de Doenças , Humanos , Degeneração Macular/genética , Degeneração Macular/metabolismo , Masculino , Camundongos , Camundongos Knockout
14.
Sci Immunol ; 6(66): eabi4493, 2021 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-34860583

RESUMO

Detection of microbial products by multiprotein complexes known as inflammasomes is pivotal to host defense against pathogens. Nucleotide-binding domain leucine-rich repeat (NLR) CARD domain containing 4 (NLRC4) forms an inflammasome in response to bacterial products; this requires their detection by NLR family apoptosis inhibitory proteins (NAIPs), with which NLRC4 physically associates. However, the mechanisms underlying sterile NLRC4 inflammasome activation, which is implicated in chronic noninfectious diseases, remain unknown. Here, we report that endogenous short interspersed nuclear element (SINE) RNAs, which promote atrophic macular degeneration (AMD) and systemic lupus erythematosus (SLE), induce NLRC4 inflammasome activation independent of NAIPs. We identify DDX17, a DExD/H box RNA helicase, as the sensor of SINE RNAs that licenses assembly of an inflammasome comprising NLRC4, NLR pyrin domain­containing protein 3, and apoptosis-associated speck-like protein­containing CARD and induces caspase-1 activation and cytokine release. Inhibiting DDX17-mediated NLRC4 inflammasome activation decreased interleukin-18 release in peripheral blood mononuclear cells of patients with SLE and prevented retinal degeneration in an animal model of AMD. Our findings uncover a previously unrecognized noncanonical NLRC4 inflammasome activated by endogenous retrotransposons and provide potential therapeutic targets for SINE RNA­driven diseases.


Assuntos
Proteínas Reguladoras de Apoptose/imunologia , Proteínas de Ligação ao Cálcio/imunologia , RNA Helicases DEAD-box/imunologia , Inflamassomos/imunologia , RNA/imunologia , Retroelementos/imunologia , Animais , Proteínas Reguladoras de Apoptose/deficiência , Proteínas de Ligação ao Cálcio/deficiência , Células Cultivadas , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout
15.
Sci Adv ; 7(40): eabj3658, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34586848

RESUMO

Long interspersed nuclear element-1 (L1)­mediated reverse transcription (RT) of Alu RNA into cytoplasmic Alu complementary DNA (cDNA) has been implicated in retinal pigmented epithelium (RPE) degeneration. The mechanism of Alu cDNA­induced cytotoxicity and its relevance to human disease are unknown. Here we report that Alu cDNA is highly enriched in the RPE of human eyes with geographic atrophy, an untreatable form of age-related macular degeneration. We demonstrate that the DNA sensor cGAS engages Alu cDNA to induce cytosolic mitochondrial DNA escape, which amplifies cGAS activation, triggering RPE degeneration via the inflammasome. The L1-extinct rice rat was resistant to Alu RNA­induced Alu cDNA synthesis and RPE degeneration, which were enabled upon L1-RT overexpression. Nucleoside RT inhibitors (NRTIs), which inhibit both L1-RT and inflammasome activity, and NRTI derivatives (Kamuvudines) that inhibit inflammasome, but not RT, both block Alu cDNA toxicity, identifying inflammasome activation as the terminal effector of RPE degeneration.

16.
Invest Ophthalmol Vis Sci ; 61(10): 4, 2020 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-32749462

RESUMO

Purpose: Azidothymidine (AZT), a nucleoside reverse transcriptase inhibitor, possesses anti-inflammatory and anti-angiogenic activity independent of its ability to inhibit reverse transcriptase. The aim of this study was to evaluate the efficacy of 5'-glucuronyl azidothymidine (GAZT), an antiretrovirally inert hepatic clinical metabolite of AZT, in mouse models of retinal pigment epithelium (RPE) degeneration and choroidal neovascularization (CNV), hallmark features of dry and wet age-related macular degeneration (AMD), respectively. Methods: RPE degeneration was induced in wild-type (WT) C57BL/6J mice by subretinal injection of Alu RNA. RPE degeneration was assessed by fundus photography and confocal microscopy of zonula occludens-1-stained RPE flat mounts. Choroidal neovascularization was induced by laser injury in WT mice, and CNV volume was measured by confocal microscopy. AZT and GAZT were delivered by intravitreous injections. Inflammasome activation was monitored by western blotting for caspase-1 and by ELISA for IL-1ß in Alu RNA-treated bone marrow-derived macrophages (BMDMs). Results: GAZT inhibited Alu RNA-induced RPE degeneration and laser-induced CNV. GAZT also reduced Alu RNA-induced caspase-1 activation and IL-1ß release in BMDMs. Conclusions: GAZT possesses dual anti-inflammatory and anti-angiogenic properties and could be a viable treatment option for both forms of AMD.


Assuntos
Neovascularização de Coroide/tratamento farmacológico , Modelos Animais de Doenças , Atrofia Geográfica/tratamento farmacológico , Epitélio Pigmentado da Retina/efeitos dos fármacos , Inibidores da Transcriptase Reversa/uso terapêutico , Zidovudina/análogos & derivados , Animais , Western Blotting , Caspase 1/metabolismo , Neovascularização de Coroide/metabolismo , Ensaio de Imunoadsorção Enzimática , Feminino , Atrofia Geográfica/metabolismo , Interleucina-1beta/metabolismo , Injeções Intravítreas , Macrófagos/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Microscopia Confocal , Inibidores da Transcriptase Reversa/administração & dosagem , Zidovudina/administração & dosagem , Zidovudina/uso terapêutico , Proteína da Zônula de Oclusão-1/metabolismo
17.
Cell Rep ; 23(12): 3635-3646, 2018 06 19.
Artigo em Inglês | MEDLINE | ID: mdl-29925004

RESUMO

Placental growth factor (PlGF) is a proangiogenic member of the vascular endothelial growth factor (VEGF) family playing a central role in pathological angiogenesis. PlGF-DE is a PlGF variant unable to bind vascular endothelial growth factor receptor 1 (VEGFR-1) but still able to generate heterodimer with VEGF-A. We have generated PlGF-DE knockin mice that are vital and fertile and show unaltered expression of Plgf, Vegf-a, Vegfr-1, and Vegfr-2 compared with wild-type mice. Interestingly, these mutants showed additional and remarkable angiogenesis impairment in tumor growth, hindlimb ischemia, and choroidal neovascularization compared with both PlGF knockout and wild-type mice. These findings provided insights on VEGF-A/PlGF heterodimer function, which was able to rescue neovascularization and vascular leakage in PlGF-DE knockin mice. Collectively, these data show that PlGF-DE knockin mouse could be considered the full functional knockout of PlGF, suggesting a reassessment of the phenotypes of knockout mice for the genes whose products are able to generate heterodimeric proteins.


Assuntos
Técnicas de Introdução de Genes , Fator de Crescimento Placentário/metabolismo , Multimerização Proteica , Fator A de Crescimento do Endotélio Vascular/metabolismo , Animais , Proliferação de Células , Neovascularização de Coroide/metabolismo , Neovascularização de Coroide/patologia , Inibidor de Quinase Dependente de Ciclina p27/metabolismo , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Óxido Nítrico Sintase Tipo III/metabolismo , Fosforilação , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/metabolismo
18.
Invest Ophthalmol Vis Sci ; 59(15): 5795-5802, 2018 12 03.
Artigo em Inglês | MEDLINE | ID: mdl-30508043

RESUMO

Purpose: The misuse of inauthentic cell lines is widely recognized as a major threat to the integrity of biomedical science. Whereas the majority of efforts to address this have focused on DNA profiling, we sought to anatomically, transcriptionally, and functionally authenticate the RF/6A chorioretinal cell line, which is widely used as an endothelial cell line to model retinal and choroidal angiogenesis. Methods: Multiple vials of RF/6A cells obtained from different commercial distributors were studied to validate their genetic, transcriptomic, anatomic, and functional fidelity to bona fide endothelial cells. Results: Transcriptomic profiles of RF/6A cells obtained either de novo or from a public data repository did not correspond to endothelial gene expression signatures. Expression of established endothelial markers were very low or undetectable in RF/6A compared to primary human endothelial cells. Importantly, RF/6A cells also did not display functional characteristics of endothelial cells such as uptake of acetylated LDL, expression of E-selectin in response to TNF-α exposure, alignment in the direction of shear stress, and AKT and ERK1/2 phosphorylation following VEGFA stimulation. Conclusions: Multiple independent sources of RF/6A do not exhibit key endothelial cell phenotypes. Therefore, these cells appear unsuitable as surrogates for choroidal or retinal endothelial cells. Further, cell line authentication methods should extend beyond genomic profiling to include anatomic, transcriptional, and functional assessments.


Assuntos
Corioide/irrigação sanguínea , Células Endoteliais/citologia , Vasos Retinianos/fisiologia , Animais , Biomarcadores , Western Blotting , Linhagem Celular , Selectina E/genética , Células Endoteliais/metabolismo , Perfilação da Expressão Gênica , Marcadores Genéticos/genética , Humanos , Imuno-Histoquímica , Macaca mulatta , Camundongos , Camundongos Endogâmicos C57BL , Microscopia de Fluorescência , Fenótipo , Reação em Cadeia da Polimerase em Tempo Real , Transcriptoma/genética
19.
Nat Med ; 24(1): 50-61, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-29176737

RESUMO

Geographic atrophy is a blinding form of age-related macular degeneration characterized by retinal pigmented epithelium (RPE) death; the RPE also exhibits DICER1 deficiency, resultant accumulation of endogenous Alu-retroelement RNA, and NLRP3-inflammasome activation. How the inflammasome is activated in this untreatable disease is largely unknown. Here we demonstrate that RPE degeneration in human-cell-culture and mouse models is driven by a noncanonical-inflammasome pathway that activates caspase-4 (caspase-11 in mice) and caspase-1, and requires cyclic GMP-AMP synthase (cGAS)-dependent interferon-ß production and gasdermin D-dependent interleukin-18 secretion. Decreased DICER1 levels or Alu-RNA accumulation triggers cytosolic escape of mitochondrial DNA, which engages cGAS. Moreover, caspase-4, gasdermin D, interferon-ß, and cGAS levels were elevated in the RPE in human eyes with geographic atrophy. Collectively, these data highlight an unexpected role of cGAS in responding to mobile-element transcripts, reveal cGAS-driven interferon signaling as a conduit for mitochondrial-damage-induced inflammasome activation, expand the immune-sensing repertoire of cGAS and caspase-4 to noninfectious human disease, and identify new potential targets for treatment of a major cause of blindness.


Assuntos
Atrofia Geográfica/enzimologia , Inflamassomos/metabolismo , Nucleotidiltransferases/metabolismo , Animais , RNA Helicases DEAD-box/genética , Humanos , Interferon Tipo I/metabolismo , Camundongos , Epitélio Pigmentado da Retina/metabolismo , Ribonuclease III/genética , Transdução de Sinais
20.
Oncotarget ; 9(39): 25630-25646, 2018 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-29876013

RESUMO

Epigenetic alterations have been associated with both pathogenesis and progression of cancer. By screening of library compounds, we identified a novel hybrid epi-drug MC2884, a HAT/EZH2 inhibitor, able to induce bona fide cancer-selective cell death in both solid and hematological cancers in vitro, ex vivo and in vivo xenograft models. Anticancer action was due to an epigenome modulation by H3K27me3, H3K27ac, H3K9/14ac decrease, and to caspase-dependent apoptosis induction. MC2884 triggered mitochondrial pathway apoptosis by up-regulation of cleaved-BID, and strong down-regulation of BCL2. Even aggressive models of cancer, such as p53-/- or TET2-/- cells, responded to MC2884, suggesting MC2884 therapeutic potential also for the therapy of TP53 or TET2-deficient human cancers. MC2884 induced massive apoptosis in ex vivo human primary leukemia blasts with poor prognosis in vivo, by targeting BCL2 expression. MC2884-treatment reduced acetylation of the BCL2 promoter at higher level than combined p300 and EZH2 inhibition. This suggests a key role for BCL-2 reduction in potentiating responsiveness, also in combination therapy with BCL2 inhibitors. Finally, we identified both the mechanism of MC2884 action as well as a potential therapeutic scheme of its use. Altogether, this provides proof of concept for the use of epi-drugs coupled with epigenome analyses to 'personalize' precision medicine.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA