Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
Mais filtros

País/Região como assunto
País de afiliação
Intervalo de ano de publicação
1.
Crit Rev Food Sci Nutr ; 62(24): 6605-6645, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-33779434

RESUMO

Devices of human-based senses such as e-noses, e-tongues and e-eyes can be used to analyze different compounds in several food matrices. These sensors allow the detection of one or more compounds present in complex food samples, and the responses obtained can be used for several goals when different chemometric tools are applied. In this systematic review, we used Preferred Reporting Items for Systematic Reviews and Meta-Analysis guidelines, to address issues such as e-sensing with chemometric methods for food quality control (FQC). A total of 109 eligible articles were selected from PubMed, Scopus and Web of Science. Thus, we predicted that the association between e-sensing and chemometric tools is essential for FQC. Most studies have applied preliminary approaches like exploratory analysis, while the classification/regression methods have been less investigated. It is worth mentioning that non-linear methods based on artificial intelligence/machine learning, in most cases, had classification/regression performances superior to non-liner, although their applications were seen less often. Another approach that has generated promising results is the data fusion between e-sensing devices or in conjunction with other analytical techniques. Furthermore, some future trends in the application of miniaturized devices and nanoscale sensors are also discussed.


Assuntos
Inteligência Artificial , Qualidade dos Alimentos , Algoritmos , Nariz Eletrônico , Humanos , Língua/fisiologia
2.
Int J Mol Sci ; 23(22)2022 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-36430619

RESUMO

Aldehydes, particularly acetaldehyde, are carcinogenic molecules and their concentrations in foodstuffs should be controlled to avoid upper aerodigestive tract (UADT) and liver cancers. Highly reactive, acetaldehyde forms DNA and protein adducts, impairing physiological functions and leading to the development of pathological conditions. The consumption of aged beer, outside of the ethanol metabolism, exposes habitual drinkers to this carcinogen, whose concentrations can be over-increased due to post-brewing chemical and biochemical reactions. Storage-related changes are a challenge faced by the brewing industry, impacting volatile compound formation and triggering flavor instability. Aldehydes are among the volatile compounds formed during beer aging, recognized as off-flavor compounds. To track and understand aldehyde formation through multiple pathways during beer storage, consequent changes in flavor but particularly quality losses and harmful compound formation, this systematic review reunited data on volatile compound profiles through gas chromatography analyses from 2011 to 2021. Conditions to avoid flavor instability and successful methods for reducing beer staling, and consequent acetaldehyde accumulation, were raised by exploring the dynamic conversion between free and bound-state aldehydes. Future research should focus on implementing sensory analyses to investigate whether adding aldehyde-binding agents, e.g., cysteine and bisulfite, would contribute to consumer acceptance, restore beer flavor, and minimize acetaldehyde-related health damage.


Assuntos
Acetaldeído , Aldeídos , Humanos , Idoso , Cerveja , Carcinógenos , Carcinogênese
3.
Compr Rev Food Sci Food Saf ; 19(5): 2721-2746, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-33336986

RESUMO

In recent years, substantial consideration within the food industry has been aimed at the development of food-grade nanoemulsions (NE) as promising systems for encapsulating, stabilizing, and delivering bioactive compounds. Although numerous studies have revealed the critical potential of NE, there are still several challenges to overcome them. These include the extensive amounts of synthetic emulsifiers needed for NE formulation, which can potentially be toxic for human health. The interest in safety, and natural emulsifiers have stimulated food manufacturers to develop "label-friendly" formulations by replacing synthetic emulsifiers with natural alternatives. This review represents a critical and comprehensive summary of the application of natural emulsifiers as potential substitutes for synthetic emulsifiers in NE production, with particular emphasis on the newly identified natural emulsifiers. Some recent reports showed the excellent emulsifying properties of various natural emulsifier extracted from natural resources, to produce NE, and therefore, might be generalized for further industrial applications. Future trends are encouraged to identify novel natural emulsifiers from industrial food by-products that may demonstrate highly effective emulsifiers.


Assuntos
Emulsificantes/química , Tecnologia de Alimentos , Produtos Biológicos/química , Nanotecnologia
4.
Adv Exp Med Biol ; 974: 175-182, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28353234

RESUMO

Two-dimensional gel electrophoresis (2DE) has been a mainstay of proteomic techniques for more than four decades. It was even in use for several years before the term proteomics was actually coined in the early 1990s. Over this time, it has been used in the study of many diseases including cancer, diabetes, heart disease, and psychiatric disorders through the proteomic analysis of body fluids and tissues. This chapter presents a general protocol which can be applied in the study of biological samples such as blood serum or plasma and multiple tissues including the brain.


Assuntos
Eletroforese em Gel Bidimensional/métodos , Proteínas/análise , Eletroforese em Gel Bidimensional/instrumentação , Humanos , Concentração de Íons de Hidrogênio , Indicadores e Reagentes , Focalização Isoelétrica/instrumentação , Focalização Isoelétrica/métodos , Proteômica/métodos , Corantes de Rosanilina , Coloração e Rotulagem/métodos
5.
Electrophoresis ; 37(2): 321-34, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26542084

RESUMO

One of the problems with 2DE is that proteins present in low amounts in a sample are usually not detected, since their signals are masked by the predominant proteins. The elimination of these abundant proteins is not a guaranteed solution to achieve the desired results. The main objective of this study was the comparison of common and simple methodologies employed for 2DE analysis followed by MS identification, focusing on a pre-purified sample using a wheat germ agglutinin (WGA) column. Adult male C57Black/Crj6 (C57BL/6) mice were chosen as the model animal in this study; the gastrocnemius muscles were collected and processed for the experiments. The initial fractionation with succinylated WGA was successful for the elimination of the most abundant proteins. Two quantification methods were employed for the purified samples, and bicinchoninic acid (BCA) was proven to be most reliable for the quantification of glycoproteins. The gel staining method, however, was found to be decisive for the detection of specific proteins, since their structures affect the interaction of the dye with the peptide backbone. The Coomassie Blue R-250 dye very weakly stained the gel with the WGA purified sample. When the same gel was stained with silver nitrate, however, MS could positively assign 12 new spots. The structure of the referred proteins was not found to be prone to interaction with Coomassie blue.


Assuntos
Eletroforese em Gel Bidimensional/métodos , Glicoproteínas/análise , Músculos/química , Animais , Cromatografia de Afinidade/métodos , Corantes/análise , Glicoproteínas/isolamento & purificação , Glicosilação , Masculino , Camundongos Endogâmicos C57BL , Proteínas Musculares/análise , Proteínas Musculares/isolamento & purificação , Corantes de Rosanilina/análise , Coloração pela Prata/métodos , Espectrometria de Massas em Tandem/métodos , Aglutininas do Germe de Trigo/química
6.
J Pharm Biomed Anal ; 222: 115087, 2023 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-36206693

RESUMO

The current pandemic of the acute severe respiratory syndrome coronavirus 2 (SARS-CoV-2) killed about 6.4 million and infected more than 600 million individuals by august of 2022, and researchers worldwide are searching for fast and selective approaches for this virus detection. Colorimetric biosensors are an excellent alternative because they are sensitive, simple, fast, and low-cost for rapid detection of SARS-CoV-2 compared to standard Enzyme-linked immunosorbent assay (ELISA) and Polymerase Chain Reaction (PCR) techniques. This study systematically searched and reviewed literature data related to colorimetric biosensors in detecting SARS-CoV-2 viruses, recovered from the Scopus (n = 16), Web of Science (n = 19), PubMed (n = 19), and Science Direct (n = 17) databases totalizing n = 71 articles. Data were analyzed for the type of nanomaterial, biorecognition material at the detection limit (LOD), and devices designed for diagnostics. The most applied nanomaterial were gold nanoparticles, in their original form and hybrid in quantum dots and core-shell. In addition, we show high specificity in point-of-care (POC) diagnostic devices as a faster and cheaper alternative for clinical diagnosis. Finally, the highlights of the colorimetric biosensor developed for diagnostic devices applied in swabs, surgical masks, and lateral flow immunoassays were presented.


Assuntos
COVID-19 , Nanopartículas Metálicas , Humanos , SARS-CoV-2 , Colorimetria , Ouro , COVID-19/diagnóstico
7.
Crit Rev Anal Chem ; 53(6): 1174-1196, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-34908509

RESUMO

Brazil annually produces around 43 million tons of fruits and vegetables. Therefore, large amounts of pesticides are needed to grow these foods. The use of unauthorized or indiscriminate pesticides can lead to the adherence of residues of these compounds to the product in a concentration above the maximum residue limit (MRL). Pesticide residues (PRs) monitoring is a continuous challenge due to several factors influencing the detection of these compounds in the food matrix. Currently, several adaptations to conventional techniques have been developed to minimize these problems. This systematic review presents the main information obtained from 52 research articles, taken from five databases, on changes and advances in Brazil in sample preparation methods for determining PRs in fruits and vegetables in the last nine years. We cover the preexisting ones and some others that might be suitable alternatives approaches. In addition, we present a brief discussion on the monitoring of PRs in different Brazilian regions, and we found that residues belonging to the organophosphate and pyrethroid classes were detected more frequently. Approximately 67% of the residues detected are of irregular use in 28 types of fruits and vegetables commonly consumed and exported by Brazil.


Assuntos
Resíduos de Praguicidas , Praguicidas , Resíduos de Praguicidas/análise , Verduras/química , Frutas/química , Brasil , Praguicidas/análise , Contaminação de Alimentos/análise
8.
Spectrochim Acta A Mol Biomol Spectrosc ; 285: 121883, 2023 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-36126622

RESUMO

Alternative routes such as virus transmission or cross-contamination by food have been suggested, due to reported cases of SARS-CoV-2 in frozen chicken wings and fish or seafood. Delay in routine testing due to the dependence on the PCR technique as the standard method leads to greater virus dissemination. Therefore, alternative detection methods such as FTIR spectroscopy emerge as an option. Here, we demonstrate a fast (3 min), simple and reagent-free methodology using attenuated total reflection-Fourier transform infrared (ATR-FTIR) spectroscopy for discrimination of food (chicken, beef and fish) contaminated with the SARS-CoV-2 virus. From the IR spectra of the samples, the "bio-fingerprint" (800 - 1900 cm-1) was selected to investigate the distinctions caused by the virus contamination. Exploratory analysis of the spectra, using Principal Component of Analysis (PCA), indicated the differentiation in the data due to the presence of single bands, marked as contamination from nucleic acids including viral RNA. Furthermore, the partial least squares discriminant analysis (PLS-DA) classification model allowed for discrimination of each matrix in its pure form and its contaminated counterpart with sensitivity, specificity and accuracy of 100 %. Therefore, this study indicates that the use of ATR-FTIR can offer a fast and low cost and not require chemical reagents and with minimal sample preparation to detect the SARS-CoV-2 virus in food matrices, ensuring food safety and non-dissemination by consumers.


Assuntos
COVID-19 , SARS-CoV-2 , Bovinos , Animais , Espectroscopia de Infravermelho com Transformada de Fourier/métodos , Quimiometria , COVID-19/diagnóstico , Análise Discriminante , Análise dos Mínimos Quadrados , Peixes
9.
J AOAC Int ; 95(5): 1338-42, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23175963

RESUMO

Metal-organic frameworks aluminum terephthalate MIL-53 and Cu-benzene-1,3,5-tricarboxylate (BTC) were tested for extraction of pyrimethanil, ametryn, dichlofluanid, tetraconazole, flumetralin, kresoximmethyl, and tebuconazole from the medicinal plant Hyptis pectinata, with analysis using GC/MS in the selected ion monitoring mode. Experiments carried out at different fortification levels (0.1, 0.5, and 1.0 microg/g) resulted in recoveries in the range 61 to 107% with RSD values between 3 and 12% for the metal-organic framework materials. Detection and quantification limits ranged from 0.02 to 0.07 and 0.05 to 0.1 microg/g, respectively, for the different pesticides studied. The method developed was linear over the range tested (0.04-20.0 microg/g), with correlation coefficients ranging from 0.9987 to 0.9998. Comparison of MIL-53 and Cu-BTC with C18-bonded silica showed good performance of the MIL-53 metal-organic framework as a sorbent for the pesticides tested.


Assuntos
Cromatografia Gasosa-Espectrometria de Massas/métodos , Hyptis/química , Metais/química , Praguicidas/química , Extração em Fase Sólida/métodos , Adsorção , Resíduos de Praguicidas/química , Plantas Medicinais/química
10.
J Pharm Biomed Anal ; 211: 114608, 2022 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-35123330

RESUMO

Coronavidae viruses, such as SARS-CoV, SARS-CoV-2, and MERS-CoV, cause severe lower respiratory tract infection, acute respiratory distress syndrome and extrapulmonary manifestations, such as diarrhea and fever, eventually leading to death. Fast, accurate, reproductible, and cost-effective SARS-CoV-2 identification can be achieved employing nano-biosensors, reinforcing conventional methodologies to avoid the spread of COVID-19 within and across communities. Nano-biosensors built using gold, silver, graphene, In2O3 nanowire and iron oxide nanoparticles, Quantum Dots and carbon nanofibers have been successfully employed to detect specific virus antigens - nucleic acid sequences and/or proteins -or host antibodies produced in response to viral infection. Biorecognition counterpart molecules have been immobilized on the surface of these nanomaterials, leading to selective virus detection by optical or electrochemical transducer systems. This systematic review assessed studies on described and tested immunonsensors and genosensors designed from distinct nanomaterials available at the Pubmed, Scopus, and Science Direct databases. Twenty-three nano biosensors were found suitable for unequivocal coronavirus detection in clinical samples. Nano-biosensors coupled to RT-LAMP/RT-PCR assays can optimize RNA extraction, reduce analysis times and/or eliminate sophisticated instrumentation. Although promising for the diagnosis of Coronavidae family members, further trials in large populations must be adequately and rigorously conducted to address nano-biosensor applicability in the clinical practice for early coronavirus infection detection.


Assuntos
Técnicas Biossensoriais , COVID-19 , Nanoestruturas , Técnicas Biossensoriais/métodos , COVID-19/diagnóstico , Ouro/química , Humanos , SARS-CoV-2/genética
11.
Nanomaterials (Basel) ; 12(5)2022 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-35269310

RESUMO

Salmonella bacteria is a foodborne pathogen found mainly in food products causing severe symptoms in the individual, such as diarrhea, fever, and abdominal cramps after consuming the infected food, which can be fatal in some severe cases. Rapid and selective methods to detect Salmonella bacteria can prevent outbreaks when ingesting contaminated food. Nanobiosensors are a highly sensitive, simple, faster, and lower cost method for the rapid detection of Salmonella, an alternative to conventional enzyme-linked immunosorbent assay (ELISA) and polymerase chain reaction (PCR) techniques. This study systematically searched and analyzed literature data related to nucleic acid-based nanobiosensors (NABs) with nanomaterials to detect Salmonella in food, retrieved from three databases, published between 2010 and 2021. We extracted data and critically analyzed the effect of nanomaterial functionalized with aptamer or DNA at the limit of detection (LOD). Among the nanomaterials, gold nanoparticles (AuNPs) were the most used nanomaterial in studies due to their unique optical properties of the metal, followed by magnetic nanoparticles (MNPs) of Fe3O4, copper nanoparticles (CuNPs), and also hybrid nanomaterials multiwalled carbon nanotubes (c-MWCNT/AuNP), QD/UCNP-MB (quantum dotes upconverting nanoparticle of magnetic beads), and cadmium telluride quantum dots (CdTe QDs@MNPs) showed excellent LOD values. The transducers used for detection also varied from electrochemical, fluorescent, surface-enhanced Raman spectroscopy (SERS), RAMAN spectroscopy, and mainly colorimetric due to the possibility of visualizing the detection result with the naked eye. Furthermore, we show the magnetic separation system capable of detecting the target amplification of the genetic material. Finally, we present perspectives, future research, and opportunities to use point-of-care (POC) diagnostic devices as a faster and lower cost approach for detecting Salmonella in food as they prove to be viable for resource-constrained environments such as field-based or economically limited conditions.

12.
Biosensors (Basel) ; 12(8)2022 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-36004968

RESUMO

Biosensors are a simple, low-cost, and reliable way to detect pesticides in food matrices to ensure consumer food safety. This systematic review lists which nanomaterials, biorecognition materials, transduction methods, pesticides, and foods have recently been studied with biosensors associated with analytical performance. A systematic search was performed in the Scopus (n = 388), Web of Science (n = 790), and Science Direct (n = 181) databases over the period 2016-2021. After checking the eligibility criteria, 57 articles were considered in this study. The most common use of nanomaterials (NMs) in these selected studies is noble metals in isolation, such as gold and silver, with 8.47% and 6.68%, respectively, followed by carbon-based NMs, with 20.34%, and nanohybrids, with 47.45%, which combine two or more NMs, uniting unique properties of each material involved, especially the noble metals. Regarding the types of transducers, the most used were electrochemical, fluorescent, and colorimetric, representing 71.18%, 13.55%, and 8.47%, respectively. The sensitivity of the biosensor is directly connected to the choice of NM and transducer. All biosensors developed in the selected investigations had a limit of detection (LODs) lower than the Codex Alimentarius maximum residue limit and were efficient in detecting pesticides in food. The pesticides malathion, chlorpyrifos, and paraoxon have received the greatest attention for their effects on various food matrices, primarily fruits, vegetables, and their derivatives. Finally, we discuss studies that used biosensor detection systems devices and those that could detect multi-residues in the field as a low-cost and rapid technique, particularly in areas with limited resources.


Assuntos
Técnicas Biossensoriais , Nanoestruturas , Praguicidas , Técnicas Biossensoriais/métodos , Limite de Detecção , Praguicidas/análise , Verduras/química
13.
Anal Methods ; 14(47): 4922-4930, 2022 12 08.
Artigo em Inglês | MEDLINE | ID: mdl-36426753

RESUMO

The increased spread of COVID-19 caused by SARS-CoV-2 has made it necessary to develop more efficient, fast, accurate, specific, sensitive and easy-to-use detection platforms to overcome the disadvantages of gold standard methods (RT-qPCR). Here an approach was developed for the detection of the SARS-CoV-2 virus using the loop-mediated isothermal amplification (LAMP) technique for SARS-CoV-2 RNA target amplification in samples of nasopharyngeal swabs. The discrimination between positive and negative SARS-CoV-2 samples was achieved by using fluorescence spectra generated by the excitation of the LAMP's DNA intercalator dye at λ497 nm in a fluorescence spectrophotometer and chemometric tools. Exploratory analysis of the 83 sample spectra using principal component analysis (PCA) indicated a trend in differentiation between positive and negative samples resulting from the peak emission of the fluorescent dye. The classification was performed by partial least squares discriminant analysis (PLS-DA) achieving a sensitivity, a specificity and an accuracy of 100%, 95% and 89%, respectively for the discrimination between negative and positive samples from 1.58 to 0.25 ng L-1 after LAMP amplification. Therefore, this study indicates that the use of the LAMP technique in fluorescence spectroscopy may offer a fast (<1 hour), sensitive and low-cost method.


Assuntos
Teste para COVID-19 , SARS-CoV-2 , Humanos , COVID-19/diagnóstico , RNA Viral , SARS-CoV-2/genética , Espectrometria de Fluorescência , Teste para COVID-19/métodos , Quimiometria/métodos
14.
Biosensors (Basel) ; 12(12)2022 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-36551068

RESUMO

A new transmission route of SARS-CoV-2 through food was recently considered by the World Health Organization (WHO), and, given the pandemic scenario, the search for fast, sensitive, and low-cost methods is necessary. Biosensors have become a viable alternative for large-scale testing because they overcome the limitations of standard techniques. Herein, we investigated the ability of gold spherical nanoparticles (AuNPs) functionalized with oligonucleotides to detect SARS-CoV-2 and demonstrated their potential to be used as plasmonic nanobiosensors. The loop-mediated isothermal amplification (LAMP) technique was used to amplify the viral genetic material from the raw virus-containing solution without any preparation. The detection of virus presence or absence was performed by ultraviolet-visible (UV-Vis) absorption spectroscopy, by monitoring the absorption band of the surface plasmonic resonance (SPR) of the AuNPs. The displacement of the peak by 525 nm from the functionalized AuNPs indicated the absence of the virus (particular region of gold). On the other hand, the region ~300 nm indicated the presence of the virus when RNA bound to the functionalized AuNPs. The nanobiosensor system was designed to detect a region of the N gene in a dynamic concentration range from 0.1 to 50 × 103 ng·mL-1 with a limit of detection (LOD) of 1 ng·mL-1 (2.7 × 103 copy per µL), indicating excellent sensitivity. The nanobiosensor was applied to detect the SARS-CoV-2 virus on the surfaces of vegetables and showed 100% accuracy compared to the standard quantitative reverse transcription polymerase chain reaction (RT-qPCR) technique. Therefore, the nanobiosensor is sensitive, selective, and simple, providing a viable alternative for the rapid detection of SARS-CoV-2 in ready-to-eat vegetables.


Assuntos
COVID-19 , Nanopartículas Metálicas , Humanos , SARS-CoV-2/genética , COVID-19/diagnóstico , Ouro , Ressonância de Plasmônio de Superfície , Técnicas de Diagnóstico Molecular/métodos , Técnicas de Amplificação de Ácido Nucleico/métodos , Sensibilidade e Especificidade
15.
J Am Soc Mass Spectrom ; 32(1): 281-288, 2021 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-33176096

RESUMO

The recent developments on fieldable miniature mass spectrometers require efforts to produce easy-to-use and portable alternative tools to assist in point-of-care analysis. In this paper, the reagent-pencil (RP) technology, which has been used for solvent-free deposition of reagents in paper-based microfluidics, was combined with paper spray ionization mass spectrometry (PS-MS). In this approach, named RP-PS-MS, the PS triangular piece of paper was written with the reagent pencil, consisting of mixtures of graphite and bentonite (used as a support) and a reactive compound, and allowed to react with a given analyte from a sample matrix selectively. We conducted typical applications as proof-of-principles to verify the methodology's general usefulness in detecting small organic molecules in distinct samples. Hence, various aldehydes (2-furaldehyde, valeraldehyde, and benzaldehyde) in spiked cachaça samples (an alcoholic drink produced from fermentation/distillation of sugarcane juice) were promptly detected using a reagent pencil doped with 4-aminophenol (the reactive compound). Similarly, we recognized typical ginsenosides and triacylglycerols (TAGs) in ginseng aqueous infusions and soybean oil samples, respectively, using lithium chloride as the reactive compound. The results indicate that the reagent-pencil methodology is compatible with PS-MS and provides an easy and fast way to detect target analytes in complex samples. The advantage over the usual solution-based deposition of reagents lies in the lack of preparation or carrying different specific solutions for special applications, which can simplify operation, especially in point-of-care analysis with fieldable mass spectrometers.

16.
Biosensors (Basel) ; 10(12)2020 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-33260424

RESUMO

Several individuals will experience accidental exposure to an allergen. In this sense, the industry has invested in the processes of removing allergenic compounds in food. However, accidental exposure to allergenic proteins can result from allergenic substances not specified on labels. Analysis of allergenic foods is involved in methods based on immunological, genetic, and mass spectrometry. The traditional methods have some limitations, such as high cost. In recent years, biosensor and nanoparticles combined have emerged as sensitive, selective, low-cost, and time-consuming techniques that can replace classic techniques. Nevertheless, each nanomaterial has shown a different potential to specific allergens or classes. This review used Preferred Reporting Items for Systematic Reviews and the Meta-Analysis guidelines (PRISMA) to approach these issues. A total of 104 articles were retrieved from a standardized search on three databases (PubMed, Scopus and Web of Science). The systematic review article is organized by the category of allergen detection and nanoparticle detection. This review addresses the relevant biosensors and nanoparticles as gold, carbon, graphene, quantum dots to allergen protein detection. Among the selected articles it was possible to notice a greater potential application on the allergic proteins Ah, in peanuts and gold nanoparticle-base as a biosensor. We envision that in our review, the association between biosensor and nanoparticles has shown promise in the analysis of allergenic proteins present in different food samples.


Assuntos
Técnicas Biossensoriais , Análise de Alimentos , Hipersensibilidade Alimentar/diagnóstico , Ouro , Nanopartículas Metálicas , Alérgenos , Alimentos , Grafite , Humanos , Nanoestruturas , Proteínas , Pontos Quânticos
17.
Artigo em Inglês | MEDLINE | ID: mdl-32304808

RESUMO

Atypical antipsychotics are widely used to manage schizophrenia symptoms. However, these drugs can induce deleterious side effects, such as MetS, which are associated with an increased cardiovascular risk to patients. Lipids play a central role in this context, and changes in lipid metabolism have been implicated in schizophrenia's pathobiology. Furthermore, recent evidence suggests that lipidome changes may be related to antipsychotic treatment response. The aim of this study was to evaluate the lipidome changes in blood plasma samples of schizophrenia patients before and after 6 weeks of treatment with either risperidone, olanzapine, or quetiapine. Liquid chromatography tandem mass spectrometry (LC-MS/MS) analysis showed changes in the levels of ceramides (Cer), glycerophosphatidic acids (PA), glycerophosphocholines (PC), phosphatidylethanolamines (PE), phosphatidylinositols (PI), glycerophosphoglycerols (PG), and phosphatidylserines (PS) for all treatments. However, the treatment with risperidone also affected diacylglycerides (DG), ceramide 1-phosphates (CerP), triglycerides (TG), sphingomyelins (SM), and ceramide phosphoinositols (PI-Cer). Moreover, specific lipid profiles were observed that could be used to distinguish poor and good responders to the different antipsychotics. As such, further work in this area may lead to lipid-based biomarkers that could be used to improve the clinical management of schizophrenia patients.


Assuntos
Antipsicóticos/uso terapêutico , Lipidômica/métodos , Esquizofrenia/sangue , Esquizofrenia/tratamento farmacológico , Adolescente , Adulto , Idoso , Biomarcadores/sangue , Estudos de Coortes , Feminino , Humanos , Lipidômica/tendências , Masculino , Pessoa de Meia-Idade , Esquizofrenia/diagnóstico , Resultado do Tratamento , Adulto Jovem
18.
J Proteomics ; 219: 103734, 2020 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-32201364

RESUMO

Epithelial to Mesenchymal Transition (EMT) is a normal cellular process that is also triggered during cancer progression and metastasis. EMT induces cellular and microenviromental changes, resulting in loss of epithelial features and acquisition of mesenchymal phenotypes. The growth factor TGFß and the transcription factor SNAIL1 (SNAIL) have been described as inducers of EMT. Here, we carried out an EMT model with non-tumorigenic cell line MCF-10A induced with the TGFß2 specific isoform of TGF protein family. The model was validated by molecular, morphological and functional experiments and showed correlation with the up-regulation of SNAIL. In order to identify additional regulators of EMT in this non-tumorigenic model, we explored quantitative proteomics, which revealed the Ubiquitin carboxyl-terminal hydrolase 47 (USP47) as one of the top up-regulated proteins. USP47 has a known role in cell growth and genome integrity, but not previously correlated to EMT. After validating USP47 alterations using MRM and antibody-based assays, we demonstrated that the chemical inhibition of USP47 with the inhibitor P5091 reduced expression of EMT markers and reverted morphological changes in MCF-10A cells undergoing EMT. These results support the involvement of USP47 in our EMT model as well as potential applications of deubiquitinases as therapeutic targets for cancer progression management. BIOLOGICAL SIGNIFICANCE: Metastasis is responsible for most cancer-associated mortality. Additionally, metastasis requires special attention, as the cellular transformations make treatment at this stage very difficult or occasionally impossible. Early steps in cancer metastasis involve the ability to detach from the solid tumor mass and invade the surrounding stromal tissues through cohesive migration, or a mesenchymal or amoeboid invasion. One of the first steps for metastatic cascade is denominated epithelial to mesenchymal transition (EMT), which can be triggered by different factors. Here, our efforts were directed to better understand this process and identify new pathways that contributes for acquisition of EMT, mainly focused on post translational modifications related to ubiquitin proteasome system. Our model of EMT induction by TGFß2 mimics early stage of metastatic cancer in epithelial breast cells and a proteomic study carried out for such model demonstrates that the deubiquitinase enzyme USP47 acts in SNAIL stabilization, one of the most important transcription factors for EMT phenotype acquisition and consequent metastasis. In addition, the inhibiton of USP47 with P5091, reverted the EMT phenotype. Together the knowledge of such processes of cancer progression and regulation can help in designing new strategies for combined therapies for control of cancer in early stages.


Assuntos
Transição Epitelial-Mesenquimal , Proteômica , Linhagem Celular Tumoral , Movimento Celular , Humanos , Invasividade Neoplásica , Fatores de Transcrição , Fator de Crescimento Transformador beta2 , Ubiquitina Tiolesterase , Proteases Específicas de Ubiquitina
19.
Anal Bioanal Chem ; 390(5): 1425-30, 2008 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-18193409

RESUMO

A simple and effective extraction method based on matrix solid-phase dispersion (MSPD) was developed to determine bifenthrin, buprofezin, tetradifon, and vinclozolin in propolis using gas chromatography-mass spectrometry in selected ion monitoring mode (GC-MS, SIM). Different method conditions were evaluated, for example type of solid phase (C(18), alumina, silica, and Florisil), the amount of solid phase and eluent (n-hexane, dichloromethane, dichloromethane-n-hexane (8:2 and 1:1, v/v) and dichloromethane-ethyl acetate (9:1, 8:2 and 7:3, v/v)). The best results were obtained using 0.5 g propolis, 1.0 g silica as dispersant sorbent, 1.0 g Florisil as clean-up sorbent, and dichloromethane-ethyl acetate (9:1, v/v) as eluting solvent. The method was validated by analysis of propolis samples fortified at different concentration levels (0.25 to 1.0 mg kg(-1)). Average recoveries (four replicates) ranged from 67% to 175% with relative standard deviation between 5.6% and 12.1%. Detection and quantification limits ranged from 0.05 to 0.10 mg kg(-1) and 0.15 to 0.25 mg kg(-1) propolis, respectively.


Assuntos
Hidrocarbonetos Clorados/análise , Oxazóis/análise , Própole/análise , Piretrinas/análise , Tiadiazinas/análise , Calibragem , Cromatografia Gasosa-Espectrometria de Massas , Hidrocarbonetos Clorados/química , Estrutura Molecular , Oxazóis/química , Própole/química , Piretrinas/química , Tiadiazinas/química
20.
Front Psychiatry ; 9: 209, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29887809

RESUMO

This is the first study to identify lipidomic markers in plasma associated with response of acutely ill schizophrenia patients in response to specific antipsychotic treatments. The study population included 54 schizophrenia patients treated with antipsychotics for 6 weeks. Treatment led to significant improvement in positive and negative symptoms for 34 patients with little or no improvement for 20 patients. In addition, 37 patients showed an increase in body mass index after the 6 week treatment period, consistent with effects on metabolism and the association of such effects with symptom improvement. Profiling of plasma samples taken prior to therapy using liquid chromatography tandem mass spectrometry (LC-MS/MS) resulted in identification of 38, 10, and 52 compounds associated with the olanzapine, risperidone, and quetiapine treatment groups, which could be used to distinguish responders from non-responders. Limitations include the retroactive active nature of the study and the small sample size. Further investigations with larger sample sets could lead to the development of a molecular test that could be used to help psychiatrists determine the best treatment options for each patient.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA