Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nanotechnology ; 33(41)2022 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-35732160

RESUMO

In this study, a flexible porous polyvinyl alcohol (PVA)/graphene oxide (GO) composite film was developed and tested for flexible strain sensing and energy-storage applications. Morphology and mechanical properties were studied; tensile strength and Young's modulus increased by 225% and 86.88%, respectively, at 0.5 wt% GO. The PVA/GO film possesses exceptional sensing ability to various mechanical strains, such as tension, compression, bending, and torsion. For example, the gauge factor of the PVA/GO film as a tensile-strain sensor was measured as 2.46 (246%). Under compression loads, the PVA/GO composite film showed piezoresistive and capacitive strain-sensing characteristics. Under 5 kPa of compression load, the relative resistance increased by 81% with a 100 msec response time; the relative capacitance increased by 160% with a 120 msec response time. The PVA/GO strain sensor exhibited high durability and reliability over 20 × 103cycles of tensile strain and bending at 3.33 Hz. Moreover, the PVA/GO composite film showed good electrochemical properties due to its porous structure; the maximum capacitance was 124.7 F g-1at 0.5 wt% GO. After 20 × 103charging-discharging cycles, the capacitance retention rate was 94.45%, representing high stable capacitance performance. The results show that electrically conductive porous PVA nanocomposite films are promising candidates for strain sensing and energy-storage devices.

2.
Nanotechnology ; 32(35)2021 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-34030143

RESUMO

Thermosets possess diverse physical and chemical properties and thus they are widely used in various applications such as electronic packaging, construction, and automotive industries. However, their poor thermal conductivity and weak mechanical performance jeopardize their continual spread in modern industry. In this study, boron nitride nanosheets (BNNSs) were employed to promote both mechanical and thermal properties of epoxy nanocomposites. BNNSs and their epoxy nanocomposites were fabricated usingin situsolvent ultrasonication andin situpolymerization, respectively. Thermal conductivity was enhanced by 153% increment in epoxy/BNNS nanocomposite at 7 wt% in comparison with neat epoxy. In parallel, Young's modulus, lap shear strength, fracture toughness (K1C) and energy release rate (G1C) increased by 69%, 31%, 122% and 118%, respectively at 1 wt% BNNSs. Moreover, fatigue life and strength of lap shear joints were significantly improved upon adding BNNSs. A numerical model of the single lap shear joint was developed to validate the accuracy of the material constants obtained. Epoxy/BNNS nanocomposites exhibited an outstanding mechanical performance as well as high thermal conductivity giving them merits to widen their applications in electronic and automotive industry.

3.
Nanotechnology ; 31(7): 075702, 2020 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-31639783

RESUMO

Flexible electronics is expected to be one of the most active research areas in the next decade. In this study, a mechanically strong and flexible epoxy/GnP composite film was fabricated having a percolation threshold of electrical conductivity at 1.08 vol% GnPs and high thermal conductivity as 1.07 W m-1 K-1 at 10 vol% GnPs. The composite film shows high mechanical performance: Young's modulus and tensile strength were improved by 1344% and 66.7%, respectively, at 10 vol%. The film demonstrated high sensitivity to various mechanical loads: (i) it has gauge factors of 2 at strain range 0%-7% and 6 at range 7%-10%; (ii) it gives good electrical response with bending and twisting angles up to 180°; and (iii) it displays a good compressive load response up to 2 N where the absolute value of electrical resistance change increased by 71%. Furthermore, the film showed an excellent reliability up to 5.5 × 103 cycles with minor zero-point error. Above 20 °C, the film solely acts as a temperature sensor; upon cyclic temperature testing, the film demonstrated a stable resistive response in the range of 30-75 °C with a temperature sensitivity coefficient of 0.0063 °C-1. This flexible composite film has remarkable properties that enable it to be used as a full-fledged sensor for universal applications in aerospace, automotive and civil engineering.

4.
Nanotechnology ; 31(31): 315715, 2020 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-32289762

RESUMO

A novel 2D nanomaterial, Ti3C2Tx MXene, added conductivity and reinforcement to a common elastomer, nitrile butadiene rubber (NBR). X-ray diffraction revealed the intercalation of lithium ions and elastomer chains into the MXene interlayer spacing, which enabled exfoliation in the elastomer. The reaction between MXene and NBR was proved by a stepwise Fourier transform infrared spectroscopy. With increase in MXene fractions, electrical and thermal conductivity of the composite increased to 9 × 10-5 S cm-1 and 0.69 W m-1 K-1, respectively. At only 2.8 vol% MXene, a swelling ratio of 1.61 was achieved, representing a 75% reduction compared to NBR containing either graphene or carbon nanotubes at the same filler fraction. Tensile tests showed that with the increase in MXene content, Young's modulus increased while both tensile strength and elongation at break first increased and then decreased. Overall, latex compounding proved to be an efficient technique for forming NBR/MXene nanocomposites. The revealed reaction between MXene and NBR to create functional polymer nanocomposites could provide a platform for utilising MXene for other polymers.

5.
Nanotechnology ; 30(38): 385703, 2019 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-31207589

RESUMO

Polymers are widely used but their flammability remains a serious issue causing fatalities and property damage. Herein we present an investigation into the effectiveness of graphene platelets (GnPs) to simultaneously improve the flame retardancy and mechanical properties of ethylene propylene diene monomer rubber (EPDM). EPDM was melt compounded respectively with GnPs and a commercial flame retardant (ammonium polyphosphate, APP) to produce two groups of composites. Although both fillers were well dispersed in EPDM, GnPs significantly improved the mechanical properties of EPDM whilst APP compromised some of the mechanical properties particularly at high fractions. This difference was attributed to the filler particle size and interfacial bonding. Through cone calorimetry testing, 21 wt% char yield was recorded for the EPDM/GnP composite at 12.0 vol%, in comparison with 8 wt% for the EPDM/APP composite. APP was able to lower the peak heat release rate (PHRR) and specific mass loss rate (MLR), but unfortunately it decreased the ignition time and fire performance index (FPI). By contrast, GnPs has been found to increase ignition time by 29% and FPI by 62%, while still achieved the same level of reductions in PHRR and specific MLR, demonstrating clear advantages over APP. During combustion the highly thermally stable GnPs bonded with the viscous, degraded EPDM macromolecules, forming a thick solid char layer which prevented the transport of heat and smoke, contributing to its superior flame retarding performance over APP.

6.
Nanotechnology ; 26(11): 112001, 2015 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-25705981

RESUMO

Carbon nanomaterials including carbon black (CB), carbon nanotubes (CNTs) and graphene have attracted increasingly more interest in academia due to their fascinating properties. These nanomaterials can significantly improve the mechanical, electrical, thermal, barrier, and flame retardant properties of elastomers. The improvements are dependent on the molecular nature of the matrix, the intrinsic property, geometry and dispersion of the fillers, and the interface between the matrix and the fillers. In this article, we briefly described the fabrication processes of elastomer composites, illuminated the importance of keeping fillers at nanoscale in matrices, and critically reviewed the recent development of the elastomeric composites by incorporating CB, CNTs, and graphene and its derivatives. Attention has been paid to the mechanical properties and electrical and thermal conductivity. Challenges and further research are discussed at the end of the article.

7.
Nanotechnology ; 25(4): 045501, 2014 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-24398819

RESUMO

Piezoelectric composites comprising an active phase of ferroelectric ceramic and a polymer matrix have recently found numerous sensory applications. However, it remains a major challenge to further improve their electromechanical response for advanced applications such as precision control and monitoring systems. We here investigated the incorporation of graphene platelets (GnPs) and multi-walled carbon nanotubes (MWNTs), each with various weight fractions, into PZT (lead zirconate titanate)/epoxy composites to produce three-phase nanocomposites. The nanocomposite films show markedly improved piezoelectric coefficients and electromechanical responses (50%) besides an enhancement of ~200% in stiffness. The carbon nanomaterials strengthened the impact of electric field on the PZT particles by appropriately raising the electrical conductivity of the epoxy. GnPs have been proved to be far more promising in improving the poling behavior and dynamic response than MWNTs. The superior dynamic sensitivity of GnP-reinforced composite may be caused by the GnPs' high load transfer efficiency arising from their two-dimensional geometry and good compatibility with the matrix. The reduced acoustic impedance mismatch resulting from the improved thermal conductance may also contribute to the higher sensitivity of GnP-reinforced composite. This research pointed out the potential of employing GnPs to develop highly sensitive piezoelectric composites for sensing applications.

8.
Nanotechnology ; 24(16): 165601, 2013 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-23535387

RESUMO

Rather than using graphene oxide, which is limited by a high defect concentration and cost due to oxidation and reduction, we adopted cost-effective, 3.56 nm thick graphene platelets (GnPs) of high structural integrity to melt compound with an elastomer-ethylene-propylene-diene monomer rubber (EPDM)-using an industrial facility. An elastomer is an amorphous, chemically crosslinked polymer generally having rather low modulus and fracture strength but high fracture strain in comparison with other materials; and upon removal of loading, it is able to return to its original geometry, immediately and completely. It was found that most GnPs dispersed uniformly in the elastomer matrix, although some did form clusters. A percolation threshold of electrical conductivity at 18 vol% GnPs was observed and the elastomer thermal conductivity increased by 417% at 45 vol% GnPs. The modulus and tensile strength increased by 710% and 404% at 26.7 vol% GnPs, respectively. The modulus improvement agrees well with the Guth and Halpin-Tsai models. The reinforcing effect of GnPs was compared with silicate layers and carbon nanotube. Our simple fabrication would prolong the service life of elastomeric products used in dynamic loading, thus reducing thermosetting waste in the environment.

9.
ACS Appl Mater Interfaces ; 15(13): 17054-17069, 2023 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-36944022

RESUMO

A supramolecular self-assembly method was used to prepare melamine cyanurate/α-ZrP nanosheets (MCA@α-ZrP) as a novel hybrid flame retardant for thermoplastic polyurethane (TPU). Microstructure characterization showed a uniform dispersion with strong interfacial strength of the MCA@α-ZrP hybrid within the TPU matrix, leading to simultaneous enhancements in both mechanical and fire-safety properties. The TPU/MCA@α-ZrP nanocomposite exhibited 43.1 and 47.0% increments in tensile strength and fracture energy, respectively. Thanks to the platelike structure of α-ZrP coupled with the dilution effect of MCA (releasing nonflammable gases), the hybrid MCA@α-ZrP reduced the peak heat release rate of TPU by 49.7% in comparison with 15.8 and 35.4% for TPU/MCA and TPU/ α-ZrP composites, respectively. The fire performance index of TPU is significantly promoted by 90% upon adding the MCA@α-ZrP hybrid. Additionally, LOI and UL-94 tests showed high flame-retarding characteristics for the MCA@α-ZrP hybrid. For example, LOI increased from 20.0% for neat TPU to 25.5% for the MCA@α-ZrP hybrid system, and it was rated V-1 from the UL-94 test. Furthermore, the smoke production and pyrolysis products were significantly suppressed by adding the MCA@α-ZrP hybrid into TPU. Interfacial hydrogen bonding, the dilution effect of MCA, forming a "labyrinth" layer, and catalytic action of α-ZrP nanosheets synergistically improved both the mechanical performance and flame retardancy of TPU nanocomposites. This work provides a new example of integrating traditional flame retardants with functional nanosheets to develop polymeric nanocomposites with high mechanical and fire-safety properties.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA